A methodology for transparent knowledge specification in a dynamic tuning environment

Autores
Caymes Scutari, Paola Guadalupe; Morajko, A.; Margalef, T.; Luque, E.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The increasing use of parallel/distributed applications demands a continuous support to take significant advantages from parallel power. This includes the evolution of performance analysis and tuning tools which automatically allows for obtaining a better behavior of the applications. Different approaches and tools have been proposed and they are continuously evolving to cover the requirements and expectations of users. One such tool is MATE (Monitoring Analysis and Tuning Environment), which provides automatic and dynamic tuning for parallel/distributed applications. The knowledge used by MATE to analyze and take decisions is based on performance models which include a set of performance parameters and a set of mathematical expressions modeling the solution of the performance problem. These elements are used by the tuning environment to conduct the monitoring and analysis steps, respectively. The tuning phase depends on the results of the performance analysis. This paper presents a methodology to specify performance models. Each performance model specification can be automatically and transparently translated into a piece of software code encapsulating the knowledge to be straightforwardly included in MATE. Applying this methodology, the user does not have to be involved in the implementation details of MATE, which makes the usage of the tool more transparent.
Fil: Caymes Scutari, Paola Guadalupe. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Morajko, A.. Universitat Autònoma de Barcelona; España
Fil: Margalef, T.. Universitat Autònoma de Barcelona; España
Fil: Luque, E.. Universitat Autònoma de Barcelona; España
Materia
AUTOMATIC DEVELOPMENT
AUTOMATIC PERFORMANCE ANALYSIS
DYNAMIC TUNING
PARALLEL/DISTRIBUTED COMPUTING
PERFORMANCE MODEL
SPECIFICATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/189255

id CONICETDig_91fc67d41917284796d5f72d56a8ad25
oai_identifier_str oai:ri.conicet.gov.ar:11336/189255
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A methodology for transparent knowledge specification in a dynamic tuning environmentCaymes Scutari, Paola GuadalupeMorajko, A.Margalef, T.Luque, E.AUTOMATIC DEVELOPMENTAUTOMATIC PERFORMANCE ANALYSISDYNAMIC TUNINGPARALLEL/DISTRIBUTED COMPUTINGPERFORMANCE MODELSPECIFICATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The increasing use of parallel/distributed applications demands a continuous support to take significant advantages from parallel power. This includes the evolution of performance analysis and tuning tools which automatically allows for obtaining a better behavior of the applications. Different approaches and tools have been proposed and they are continuously evolving to cover the requirements and expectations of users. One such tool is MATE (Monitoring Analysis and Tuning Environment), which provides automatic and dynamic tuning for parallel/distributed applications. The knowledge used by MATE to analyze and take decisions is based on performance models which include a set of performance parameters and a set of mathematical expressions modeling the solution of the performance problem. These elements are used by the tuning environment to conduct the monitoring and analysis steps, respectively. The tuning phase depends on the results of the performance analysis. This paper presents a methodology to specify performance models. Each performance model specification can be automatically and transparently translated into a piece of software code encapsulating the knowledge to be straightforwardly included in MATE. Applying this methodology, the user does not have to be involved in the implementation details of MATE, which makes the usage of the tool more transparent.Fil: Caymes Scutari, Paola Guadalupe. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Morajko, A.. Universitat Autònoma de Barcelona; EspañaFil: Margalef, T.. Universitat Autònoma de Barcelona; EspañaFil: Luque, E.. Universitat Autònoma de Barcelona; EspañaJohn Wiley & Sons Ltd2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/189255Caymes Scutari, Paola Guadalupe; Morajko, A.; Margalef, T.; Luque, E.; A methodology for transparent knowledge specification in a dynamic tuning environment; John Wiley & Sons Ltd; Software: Practice And Experience; 42; 3; 3-2012; 281-3020038-0644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1061info:eu-repo/semantics/altIdentifier/doi/10.1002/spe.1061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:33Zoai:ri.conicet.gov.ar:11336/189255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:33.734CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A methodology for transparent knowledge specification in a dynamic tuning environment
title A methodology for transparent knowledge specification in a dynamic tuning environment
spellingShingle A methodology for transparent knowledge specification in a dynamic tuning environment
Caymes Scutari, Paola Guadalupe
AUTOMATIC DEVELOPMENT
AUTOMATIC PERFORMANCE ANALYSIS
DYNAMIC TUNING
PARALLEL/DISTRIBUTED COMPUTING
PERFORMANCE MODEL
SPECIFICATION
title_short A methodology for transparent knowledge specification in a dynamic tuning environment
title_full A methodology for transparent knowledge specification in a dynamic tuning environment
title_fullStr A methodology for transparent knowledge specification in a dynamic tuning environment
title_full_unstemmed A methodology for transparent knowledge specification in a dynamic tuning environment
title_sort A methodology for transparent knowledge specification in a dynamic tuning environment
dc.creator.none.fl_str_mv Caymes Scutari, Paola Guadalupe
Morajko, A.
Margalef, T.
Luque, E.
author Caymes Scutari, Paola Guadalupe
author_facet Caymes Scutari, Paola Guadalupe
Morajko, A.
Margalef, T.
Luque, E.
author_role author
author2 Morajko, A.
Margalef, T.
Luque, E.
author2_role author
author
author
dc.subject.none.fl_str_mv AUTOMATIC DEVELOPMENT
AUTOMATIC PERFORMANCE ANALYSIS
DYNAMIC TUNING
PARALLEL/DISTRIBUTED COMPUTING
PERFORMANCE MODEL
SPECIFICATION
topic AUTOMATIC DEVELOPMENT
AUTOMATIC PERFORMANCE ANALYSIS
DYNAMIC TUNING
PARALLEL/DISTRIBUTED COMPUTING
PERFORMANCE MODEL
SPECIFICATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The increasing use of parallel/distributed applications demands a continuous support to take significant advantages from parallel power. This includes the evolution of performance analysis and tuning tools which automatically allows for obtaining a better behavior of the applications. Different approaches and tools have been proposed and they are continuously evolving to cover the requirements and expectations of users. One such tool is MATE (Monitoring Analysis and Tuning Environment), which provides automatic and dynamic tuning for parallel/distributed applications. The knowledge used by MATE to analyze and take decisions is based on performance models which include a set of performance parameters and a set of mathematical expressions modeling the solution of the performance problem. These elements are used by the tuning environment to conduct the monitoring and analysis steps, respectively. The tuning phase depends on the results of the performance analysis. This paper presents a methodology to specify performance models. Each performance model specification can be automatically and transparently translated into a piece of software code encapsulating the knowledge to be straightforwardly included in MATE. Applying this methodology, the user does not have to be involved in the implementation details of MATE, which makes the usage of the tool more transparent.
Fil: Caymes Scutari, Paola Guadalupe. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Morajko, A.. Universitat Autònoma de Barcelona; España
Fil: Margalef, T.. Universitat Autònoma de Barcelona; España
Fil: Luque, E.. Universitat Autònoma de Barcelona; España
description The increasing use of parallel/distributed applications demands a continuous support to take significant advantages from parallel power. This includes the evolution of performance analysis and tuning tools which automatically allows for obtaining a better behavior of the applications. Different approaches and tools have been proposed and they are continuously evolving to cover the requirements and expectations of users. One such tool is MATE (Monitoring Analysis and Tuning Environment), which provides automatic and dynamic tuning for parallel/distributed applications. The knowledge used by MATE to analyze and take decisions is based on performance models which include a set of performance parameters and a set of mathematical expressions modeling the solution of the performance problem. These elements are used by the tuning environment to conduct the monitoring and analysis steps, respectively. The tuning phase depends on the results of the performance analysis. This paper presents a methodology to specify performance models. Each performance model specification can be automatically and transparently translated into a piece of software code encapsulating the knowledge to be straightforwardly included in MATE. Applying this methodology, the user does not have to be involved in the implementation details of MATE, which makes the usage of the tool more transparent.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/189255
Caymes Scutari, Paola Guadalupe; Morajko, A.; Margalef, T.; Luque, E.; A methodology for transparent knowledge specification in a dynamic tuning environment; John Wiley & Sons Ltd; Software: Practice And Experience; 42; 3; 3-2012; 281-302
0038-0644
CONICET Digital
CONICET
url http://hdl.handle.net/11336/189255
identifier_str_mv Caymes Scutari, Paola Guadalupe; Morajko, A.; Margalef, T.; Luque, E.; A methodology for transparent knowledge specification in a dynamic tuning environment; John Wiley & Sons Ltd; Software: Practice And Experience; 42; 3; 3-2012; 281-302
0038-0644
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1061
info:eu-repo/semantics/altIdentifier/doi/10.1002/spe.1061
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614326340550656
score 13.069144