Crack detection in beam-like structures

Autores
Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
Materia
Artificial Neural Network
Beam
Crack Detection
Inverse Method
Spinning Beam
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/69260

id CONICETDig_91abd515d34642d4cf183bfdbe18d499
oai_identifier_str oai:ri.conicet.gov.ar:11336/69260
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Crack detection in beam-like structuresRosales, Marta BeatrizFilipich, Carlos PedroBuezas, Fernando SalvadorArtificial Neural NetworkBeamCrack DetectionInverse MethodSpinning Beamhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaElsevier2009-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69260Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-22640141-0296CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029609001448info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2009.04.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:17Zoai:ri.conicet.gov.ar:11336/69260instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:17.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Crack detection in beam-like structures
title Crack detection in beam-like structures
spellingShingle Crack detection in beam-like structures
Rosales, Marta Beatriz
Artificial Neural Network
Beam
Crack Detection
Inverse Method
Spinning Beam
title_short Crack detection in beam-like structures
title_full Crack detection in beam-like structures
title_fullStr Crack detection in beam-like structures
title_full_unstemmed Crack detection in beam-like structures
title_sort Crack detection in beam-like structures
dc.creator.none.fl_str_mv Rosales, Marta Beatriz
Filipich, Carlos Pedro
Buezas, Fernando Salvador
author Rosales, Marta Beatriz
author_facet Rosales, Marta Beatriz
Filipich, Carlos Pedro
Buezas, Fernando Salvador
author_role author
author2 Filipich, Carlos Pedro
Buezas, Fernando Salvador
author2_role author
author
dc.subject.none.fl_str_mv Artificial Neural Network
Beam
Crack Detection
Inverse Method
Spinning Beam
topic Artificial Neural Network
Beam
Crack Detection
Inverse Method
Spinning Beam
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
description Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.
publishDate 2009
dc.date.none.fl_str_mv 2009-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/69260
Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-2264
0141-0296
CONICET Digital
CONICET
url http://hdl.handle.net/11336/69260
identifier_str_mv Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-2264
0141-0296
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029609001448
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2009.04.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613737689907200
score 13.070432