Crack detection in beam-like structures
- Autores
- Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina - Materia
-
Artificial Neural Network
Beam
Crack Detection
Inverse Method
Spinning Beam - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69260
Ver los metadatos del registro completo
id |
CONICETDig_91abd515d34642d4cf183bfdbe18d499 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69260 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Crack detection in beam-like structuresRosales, Marta BeatrizFilipich, Carlos PedroBuezas, Fernando SalvadorArtificial Neural NetworkBeamCrack DetectionInverse MethodSpinning Beamhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested.Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaElsevier2009-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69260Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-22640141-0296CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029609001448info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2009.04.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:17Zoai:ri.conicet.gov.ar:11336/69260instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:17.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Crack detection in beam-like structures |
title |
Crack detection in beam-like structures |
spellingShingle |
Crack detection in beam-like structures Rosales, Marta Beatriz Artificial Neural Network Beam Crack Detection Inverse Method Spinning Beam |
title_short |
Crack detection in beam-like structures |
title_full |
Crack detection in beam-like structures |
title_fullStr |
Crack detection in beam-like structures |
title_full_unstemmed |
Crack detection in beam-like structures |
title_sort |
Crack detection in beam-like structures |
dc.creator.none.fl_str_mv |
Rosales, Marta Beatriz Filipich, Carlos Pedro Buezas, Fernando Salvador |
author |
Rosales, Marta Beatriz |
author_facet |
Rosales, Marta Beatriz Filipich, Carlos Pedro Buezas, Fernando Salvador |
author_role |
author |
author2 |
Filipich, Carlos Pedro Buezas, Fernando Salvador |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Artificial Neural Network Beam Crack Detection Inverse Method Spinning Beam |
topic |
Artificial Neural Network Beam Crack Detection Inverse Method Spinning Beam |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested. Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Filipich, Carlos Pedro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina |
description |
Sensibility analysis of experimentally measured frequencies as a criterion for crack detection has been extensively used in the last decades due to its simplicity. However the inverse problem of the crack parameters (location and depth) determination is not straightforward. An efficient numerical technique is necessary to obtain significant results. Two approaches are herein presented: The solution of the inverse problem with a power series technique (PST) and the use of artificial neural networks (ANNs). Cracks in a cantilever Bernoulli-Euler (BE) beam and a rotating beam are detected by means of an algorithm that solves the governing vibration problem of the beam with the PST. The ANNs technique does not need a previous model, but a training set of data is required. It is applied to the crack detection in the cantilever beam with a transverse crack. The first methodology is very simple and straightforward, though no optimization is included. It yields relative small errors in both the location and depth detection. When using one network for the detection of the two parameters, the ANNs behave adequately. However better results are found when one ANN is used for each parameter. Finally, a combination between the two techniques is suggested. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69260 Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-2264 0141-0296 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69260 |
identifier_str_mv |
Rosales, Marta Beatriz; Filipich, Carlos Pedro; Buezas, Fernando Salvador; Crack detection in beam-like structures; Elsevier; Engineering Structures; 31; 10; 10-2009; 2257-2264 0141-0296 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0141029609001448 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engstruct.2009.04.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613737689907200 |
score |
13.070432 |