Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition

Autores
Cencha, Luisa Guadalupe; Huber, Patrick; Kappl, Michael; Floudas, George; Steinhart, Martin; Berli, Claudio Luis Alberto; Urteaga, Raul
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A fluid dynamic model for imbibition into closed-end, axisymmetric pores having diameters that change as a function of the pore depth is presented. Despite the fact that liquid invasion into nonbranched closed-end pores is characterized by a wealth of different transient and/or metastable nonequilibrium stages related to precursor film formation, we show that a simple hydraulic model accounting for geometry- and air compression-induced deviations from classical Lucas-Washburn dynamics precisely describes the imbibition dynamics except at the late stage. The model was validated by laser interferometry experiments with submillisecond temporal resolution. Imbibition of three simple liquids (isopropanol, ethanol, and hexane) into self-ordered anodic alumina membranes containing arrays of parallel closed-end nanopores characterized by slight conicity was studied. The model provides an improved description of nanoscale fluid dynamics and allows geometric characterization of nanoporous membranes by their imbibition kinetics accounting for the back pressure of the compressed gas. Thus, a precise calibration of porous membranes with simple liquids becomes possible, and changes in the mean pore diameter as a function of the pore depth can be assessed.
Fil: Cencha, Luisa Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Huber, Patrick. Hamburg University Of Technology;
Fil: Kappl, Michael. Max-planck-institut Für Polymerforschung;
Fil: Floudas, George. Panepistimion Ioanninon;
Fil: Steinhart, Martin. Max-planck-institut Für Polymerforschung;
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Materia
Nanochannels
Capillary imbibition
Microfluidics
Optofluidic model
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/106815

id CONICETDig_9000d6bbd238dd7196d0ed09f3f60551
oai_identifier_str oai:ri.conicet.gov.ar:11336/106815
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibitionCencha, Luisa GuadalupeHuber, PatrickKappl, MichaelFloudas, GeorgeSteinhart, MartinBerli, Claudio Luis AlbertoUrteaga, RaulNanochannelsCapillary imbibitionMicrofluidicsOptofluidic modelhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2A fluid dynamic model for imbibition into closed-end, axisymmetric pores having diameters that change as a function of the pore depth is presented. Despite the fact that liquid invasion into nonbranched closed-end pores is characterized by a wealth of different transient and/or metastable nonequilibrium stages related to precursor film formation, we show that a simple hydraulic model accounting for geometry- and air compression-induced deviations from classical Lucas-Washburn dynamics precisely describes the imbibition dynamics except at the late stage. The model was validated by laser interferometry experiments with submillisecond temporal resolution. Imbibition of three simple liquids (isopropanol, ethanol, and hexane) into self-ordered anodic alumina membranes containing arrays of parallel closed-end nanopores characterized by slight conicity was studied. The model provides an improved description of nanoscale fluid dynamics and allows geometric characterization of nanoporous membranes by their imbibition kinetics accounting for the back pressure of the compressed gas. Thus, a precise calibration of porous membranes with simple liquids becomes possible, and changes in the mean pore diameter as a function of the pore depth can be assessed.Fil: Cencha, Luisa Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Huber, Patrick. Hamburg University Of Technology; Fil: Kappl, Michael. Max-planck-institut Für Polymerforschung; Fil: Floudas, George. Panepistimion Ioanninon; Fil: Steinhart, Martin. Max-planck-institut Für Polymerforschung; Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaAmerican Institute of Physics2019-09info:eu-repo/date/embargoEnd/2020-09-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106815Cencha, Luisa Guadalupe; Huber, Patrick; Kappl, Michael; Floudas, George; Steinhart, Martin; et al.; Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition; American Institute of Physics; Applied Physics Letters; 115; 11; 9-2019; 113701-1/50003-6951CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.5119338info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:51:06Zoai:ri.conicet.gov.ar:11336/106815instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:51:07.286CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition
title Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition
spellingShingle Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition
Cencha, Luisa Guadalupe
Nanochannels
Capillary imbibition
Microfluidics
Optofluidic model
title_short Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition
title_full Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition
title_fullStr Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition
title_full_unstemmed Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition
title_sort Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition
dc.creator.none.fl_str_mv Cencha, Luisa Guadalupe
Huber, Patrick
Kappl, Michael
Floudas, George
Steinhart, Martin
Berli, Claudio Luis Alberto
Urteaga, Raul
author Cencha, Luisa Guadalupe
author_facet Cencha, Luisa Guadalupe
Huber, Patrick
Kappl, Michael
Floudas, George
Steinhart, Martin
Berli, Claudio Luis Alberto
Urteaga, Raul
author_role author
author2 Huber, Patrick
Kappl, Michael
Floudas, George
Steinhart, Martin
Berli, Claudio Luis Alberto
Urteaga, Raul
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Nanochannels
Capillary imbibition
Microfluidics
Optofluidic model
topic Nanochannels
Capillary imbibition
Microfluidics
Optofluidic model
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A fluid dynamic model for imbibition into closed-end, axisymmetric pores having diameters that change as a function of the pore depth is presented. Despite the fact that liquid invasion into nonbranched closed-end pores is characterized by a wealth of different transient and/or metastable nonequilibrium stages related to precursor film formation, we show that a simple hydraulic model accounting for geometry- and air compression-induced deviations from classical Lucas-Washburn dynamics precisely describes the imbibition dynamics except at the late stage. The model was validated by laser interferometry experiments with submillisecond temporal resolution. Imbibition of three simple liquids (isopropanol, ethanol, and hexane) into self-ordered anodic alumina membranes containing arrays of parallel closed-end nanopores characterized by slight conicity was studied. The model provides an improved description of nanoscale fluid dynamics and allows geometric characterization of nanoporous membranes by their imbibition kinetics accounting for the back pressure of the compressed gas. Thus, a precise calibration of porous membranes with simple liquids becomes possible, and changes in the mean pore diameter as a function of the pore depth can be assessed.
Fil: Cencha, Luisa Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Huber, Patrick. Hamburg University Of Technology;
Fil: Kappl, Michael. Max-planck-institut Für Polymerforschung;
Fil: Floudas, George. Panepistimion Ioanninon;
Fil: Steinhart, Martin. Max-planck-institut Für Polymerforschung;
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
description A fluid dynamic model for imbibition into closed-end, axisymmetric pores having diameters that change as a function of the pore depth is presented. Despite the fact that liquid invasion into nonbranched closed-end pores is characterized by a wealth of different transient and/or metastable nonequilibrium stages related to precursor film formation, we show that a simple hydraulic model accounting for geometry- and air compression-induced deviations from classical Lucas-Washburn dynamics precisely describes the imbibition dynamics except at the late stage. The model was validated by laser interferometry experiments with submillisecond temporal resolution. Imbibition of three simple liquids (isopropanol, ethanol, and hexane) into self-ordered anodic alumina membranes containing arrays of parallel closed-end nanopores characterized by slight conicity was studied. The model provides an improved description of nanoscale fluid dynamics and allows geometric characterization of nanoporous membranes by their imbibition kinetics accounting for the back pressure of the compressed gas. Thus, a precise calibration of porous membranes with simple liquids becomes possible, and changes in the mean pore diameter as a function of the pore depth can be assessed.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
info:eu-repo/date/embargoEnd/2020-09-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/106815
Cencha, Luisa Guadalupe; Huber, Patrick; Kappl, Michael; Floudas, George; Steinhart, Martin; et al.; Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition; American Institute of Physics; Applied Physics Letters; 115; 11; 9-2019; 113701-1/5
0003-6951
CONICET Digital
CONICET
url http://hdl.handle.net/11336/106815
identifier_str_mv Cencha, Luisa Guadalupe; Huber, Patrick; Kappl, Michael; Floudas, George; Steinhart, Martin; et al.; Nondestructive high-throughput screening of nanopore geometry in porous membranes by imbibition; American Institute of Physics; Applied Physics Letters; 115; 11; 9-2019; 113701-1/5
0003-6951
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5119338
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083036846751744
score 13.22299