Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
- Autores
- Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; Guido, Diego Martin; Foucher, Frédéric; Turner, Susan; Perry, Randall S.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.
Fil: Campbell, Kathleen. The University of Auckland; Nueva Zelanda
Fil: Lynne, Bridget Y.. The University of Auckland; Nueva Zelanda
Fil: Handley, Kim M.. The University of Auckland; Nueva Zelanda. University of Chicago; Estados Unidos
Fil: Jordan, Sacha. The University of Auckland; Nueva Zelanda
Fil: Farmer, Jack D.. Arizona State University; Estados Unidos
Fil: Guido, Diego Martin. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Foucher, Frédéric. Centre National de la Recherche Scientifique; Francia
Fil: Turner, Susan. BioConsortia; Estados Unidos
Fil: Perry, Randall S.. Imperial College London; Reino Unido - Materia
-
Diagenesis
Fossilization. Astrobiology 15
Hot Springs
Microbial Mats
Silica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53632
Ver los metadatos del registro completo
id |
CONICETDig_8ff39ac0a26c1c606e363da9df37ea85 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53632 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological RecordCampbell, KathleenLynne, Bridget Y.Handley, Kim M.Jordan, SachaFarmer, Jack D.Guido, Diego MartinFoucher, FrédéricTurner, SusanPerry, Randall S.DiagenesisFossilization. Astrobiology 15Hot SpringsMicrobial MatsSilicahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.Fil: Campbell, Kathleen. The University of Auckland; Nueva ZelandaFil: Lynne, Bridget Y.. The University of Auckland; Nueva ZelandaFil: Handley, Kim M.. The University of Auckland; Nueva Zelanda. University of Chicago; Estados UnidosFil: Jordan, Sacha. The University of Auckland; Nueva ZelandaFil: Farmer, Jack D.. Arizona State University; Estados UnidosFil: Guido, Diego Martin. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Foucher, Frédéric. Centre National de la Recherche Scientifique; FranciaFil: Turner, Susan. BioConsortia; Estados UnidosFil: Perry, Randall S.. Imperial College London; Reino UnidoMary Ann Liebert2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53632Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; et al.; Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record; Mary Ann Liebert; Astrobiology; 15; 10; 10-2015; 858-8821531-1074CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1089/ast.2015.1307info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ast.2015.1307info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:18Zoai:ri.conicet.gov.ar:11336/53632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:18.673CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record |
title |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record |
spellingShingle |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record Campbell, Kathleen Diagenesis Fossilization. Astrobiology 15 Hot Springs Microbial Mats Silica |
title_short |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record |
title_full |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record |
title_fullStr |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record |
title_full_unstemmed |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record |
title_sort |
Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record |
dc.creator.none.fl_str_mv |
Campbell, Kathleen Lynne, Bridget Y. Handley, Kim M. Jordan, Sacha Farmer, Jack D. Guido, Diego Martin Foucher, Frédéric Turner, Susan Perry, Randall S. |
author |
Campbell, Kathleen |
author_facet |
Campbell, Kathleen Lynne, Bridget Y. Handley, Kim M. Jordan, Sacha Farmer, Jack D. Guido, Diego Martin Foucher, Frédéric Turner, Susan Perry, Randall S. |
author_role |
author |
author2 |
Lynne, Bridget Y. Handley, Kim M. Jordan, Sacha Farmer, Jack D. Guido, Diego Martin Foucher, Frédéric Turner, Susan Perry, Randall S. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Diagenesis Fossilization. Astrobiology 15 Hot Springs Microbial Mats Silica |
topic |
Diagenesis Fossilization. Astrobiology 15 Hot Springs Microbial Mats Silica |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record. Fil: Campbell, Kathleen. The University of Auckland; Nueva Zelanda Fil: Lynne, Bridget Y.. The University of Auckland; Nueva Zelanda Fil: Handley, Kim M.. The University of Auckland; Nueva Zelanda. University of Chicago; Estados Unidos Fil: Jordan, Sacha. The University of Auckland; Nueva Zelanda Fil: Farmer, Jack D.. Arizona State University; Estados Unidos Fil: Guido, Diego Martin. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Foucher, Frédéric. Centre National de la Recherche Scientifique; Francia Fil: Turner, Susan. BioConsortia; Estados Unidos Fil: Perry, Randall S.. Imperial College London; Reino Unido |
description |
New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53632 Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; et al.; Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record; Mary Ann Liebert; Astrobiology; 15; 10; 10-2015; 858-882 1531-1074 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53632 |
identifier_str_mv |
Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; et al.; Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record; Mary Ann Liebert; Astrobiology; 15; 10; 10-2015; 858-882 1531-1074 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1089/ast.2015.1307 info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ast.2015.1307 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mary Ann Liebert |
publisher.none.fl_str_mv |
Mary Ann Liebert |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613650723110912 |
score |
13.070432 |