Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record

Autores
Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; Guido, Diego Martin; Foucher, Frédéric; Turner, Susan; Perry, Randall S.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.
Fil: Campbell, Kathleen. The University of Auckland; Nueva Zelanda
Fil: Lynne, Bridget Y.. The University of Auckland; Nueva Zelanda
Fil: Handley, Kim M.. The University of Auckland; Nueva Zelanda. University of Chicago; Estados Unidos
Fil: Jordan, Sacha. The University of Auckland; Nueva Zelanda
Fil: Farmer, Jack D.. Arizona State University; Estados Unidos
Fil: Guido, Diego Martin. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Foucher, Frédéric. Centre National de la Recherche Scientifique; Francia
Fil: Turner, Susan. BioConsortia; Estados Unidos
Fil: Perry, Randall S.. Imperial College London; Reino Unido
Materia
Diagenesis
Fossilization. Astrobiology 15
Hot Springs
Microbial Mats
Silica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53632

id CONICETDig_8ff39ac0a26c1c606e363da9df37ea85
oai_identifier_str oai:ri.conicet.gov.ar:11336/53632
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological RecordCampbell, KathleenLynne, Bridget Y.Handley, Kim M.Jordan, SachaFarmer, Jack D.Guido, Diego MartinFoucher, FrédéricTurner, SusanPerry, Randall S.DiagenesisFossilization. Astrobiology 15Hot SpringsMicrobial MatsSilicahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.Fil: Campbell, Kathleen. The University of Auckland; Nueva ZelandaFil: Lynne, Bridget Y.. The University of Auckland; Nueva ZelandaFil: Handley, Kim M.. The University of Auckland; Nueva Zelanda. University of Chicago; Estados UnidosFil: Jordan, Sacha. The University of Auckland; Nueva ZelandaFil: Farmer, Jack D.. Arizona State University; Estados UnidosFil: Guido, Diego Martin. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Foucher, Frédéric. Centre National de la Recherche Scientifique; FranciaFil: Turner, Susan. BioConsortia; Estados UnidosFil: Perry, Randall S.. Imperial College London; Reino UnidoMary Ann Liebert2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53632Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; et al.; Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record; Mary Ann Liebert; Astrobiology; 15; 10; 10-2015; 858-8821531-1074CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1089/ast.2015.1307info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ast.2015.1307info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:18Zoai:ri.conicet.gov.ar:11336/53632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:18.673CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
title Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
spellingShingle Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
Campbell, Kathleen
Diagenesis
Fossilization. Astrobiology 15
Hot Springs
Microbial Mats
Silica
title_short Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
title_full Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
title_fullStr Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
title_full_unstemmed Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
title_sort Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record
dc.creator.none.fl_str_mv Campbell, Kathleen
Lynne, Bridget Y.
Handley, Kim M.
Jordan, Sacha
Farmer, Jack D.
Guido, Diego Martin
Foucher, Frédéric
Turner, Susan
Perry, Randall S.
author Campbell, Kathleen
author_facet Campbell, Kathleen
Lynne, Bridget Y.
Handley, Kim M.
Jordan, Sacha
Farmer, Jack D.
Guido, Diego Martin
Foucher, Frédéric
Turner, Susan
Perry, Randall S.
author_role author
author2 Lynne, Bridget Y.
Handley, Kim M.
Jordan, Sacha
Farmer, Jack D.
Guido, Diego Martin
Foucher, Frédéric
Turner, Susan
Perry, Randall S.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Diagenesis
Fossilization. Astrobiology 15
Hot Springs
Microbial Mats
Silica
topic Diagenesis
Fossilization. Astrobiology 15
Hot Springs
Microbial Mats
Silica
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.
Fil: Campbell, Kathleen. The University of Auckland; Nueva Zelanda
Fil: Lynne, Bridget Y.. The University of Auckland; Nueva Zelanda
Fil: Handley, Kim M.. The University of Auckland; Nueva Zelanda. University of Chicago; Estados Unidos
Fil: Jordan, Sacha. The University of Auckland; Nueva Zelanda
Fil: Farmer, Jack D.. Arizona State University; Estados Unidos
Fil: Guido, Diego Martin. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Foucher, Frédéric. Centre National de la Recherche Scientifique; Francia
Fil: Turner, Susan. BioConsortia; Estados Unidos
Fil: Perry, Randall S.. Imperial College London; Reino Unido
description New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments a stromatolite are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro-and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53632
Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; et al.; Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record; Mary Ann Liebert; Astrobiology; 15; 10; 10-2015; 858-882
1531-1074
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53632
identifier_str_mv Campbell, Kathleen; Lynne, Bridget Y.; Handley, Kim M.; Jordan, Sacha; Farmer, Jack D.; et al.; Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record; Mary Ann Liebert; Astrobiology; 15; 10; 10-2015; 858-882
1531-1074
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1089/ast.2015.1307
info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1089/ast.2015.1307
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mary Ann Liebert
publisher.none.fl_str_mv Mary Ann Liebert
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613650723110912
score 13.070432