Application of Kohonen maps to kinetic analysis of human gait

Autores
Rodrigo, Silvia Elizabeth; Lescano Pastor, Claudia Noemí; Rodrigo, Rodolfo Horacio
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In recent years the use of artificial neural networks for classification and analysis of kinematic and kinetic characteristics of human locomotion has greatly increased. This happens in an attempt to overcome the limitations of traditional dynamic analysis and to find new clinical indicators for interpreting quick and objectively the large amount of information obtained in a gait lab. One of the most widely used neural networks for human gait analysis is the self-organizing or Kohonen map, based on unsupervised learning without prior definition of the formed natural groups. Among the advantages of using this type of neural network is the data dimensionality reduction, with minimal loss of information content, and the grouping of them in function of their similarities. Taking into account this, in this work an application case of a Kohonen map for clustering of locomotion kinetic characteristics in normal and Parkinson's disease individuals is presented. The results indicate that the groups identified by the map are consistent with the classification carried out by experts in function of traditional gait dynamic analysis, showing the potential of this technique for distinguishing between a population of individuals with normal gait and with gait disorders of different etiology.
Nos últimos anos, tem aumentado significativamente o uso de redes neurais artificiais para a classificação e análise cinemática e cinética da marcha humana, em uma tentativa de superar as limitações da análise dinâmica tradicional e de encontrar novos indicadores clínicos para interpretar, de forma rápida e objetiva, a grande quantidade de informação obtida em laboratórios de marcha humana. Uma das redes neurais mais utilizadas para análise de marcha é o mapa de Kohonen ou mapa auto-organizado, baseado em aprendizado não supervisionado, sem uma definição prévia de grupos naturais que se formam. O uso deste tipo de rede neural tem mostrado benefícios significativos associados com a redução da dimensionalidade dos dados com mínima perda de conteúdo de informação e com o agrupamento de dados de acordo com suas semelhanças. Neste contexto, este trabalho apresenta um caso de aplicação de um mapa de Kohonen como classificador das características cinéticas da locomoção em indivíduos normais e com doença de Parkinson. Os resultados indicam que os grupos identificados no mapa são consistentes com a classificação feita por especialistas com base em análise dinâmica tradicional, que mostra o potencial desta técnica para diferenciar populações de indivíduos com marcha normal e de indivíduos com distúrbios da marcha de etiologia diferente.
Fil: Rodrigo, Silvia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina
Fil: Lescano Pastor, Claudia Noemí. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Rodrigo, Rodolfo Horacio. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Ingeniería Electromecánica; Argentina
Materia
Human gait
Parkinson's disease
Artificial neural network
Clustering
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/211649

id CONICETDig_8fbb059bfe0c58d930db5366b4df45fe
oai_identifier_str oai:ri.conicet.gov.ar:11336/211649
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Application of Kohonen maps to kinetic analysis of human gaitAplicação de mapas de Kohonen à análise cinética da marcha humanaRodrigo, Silvia ElizabethLescano Pastor, Claudia NoemíRodrigo, Rodolfo HoracioHuman gaitParkinson's diseaseArtificial neural networkClusteringhttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2In recent years the use of artificial neural networks for classification and analysis of kinematic and kinetic characteristics of human locomotion has greatly increased. This happens in an attempt to overcome the limitations of traditional dynamic analysis and to find new clinical indicators for interpreting quick and objectively the large amount of information obtained in a gait lab. One of the most widely used neural networks for human gait analysis is the self-organizing or Kohonen map, based on unsupervised learning without prior definition of the formed natural groups. Among the advantages of using this type of neural network is the data dimensionality reduction, with minimal loss of information content, and the grouping of them in function of their similarities. Taking into account this, in this work an application case of a Kohonen map for clustering of locomotion kinetic characteristics in normal and Parkinson's disease individuals is presented. The results indicate that the groups identified by the map are consistent with the classification carried out by experts in function of traditional gait dynamic analysis, showing the potential of this technique for distinguishing between a population of individuals with normal gait and with gait disorders of different etiology.Nos últimos anos, tem aumentado significativamente o uso de redes neurais artificiais para a classificação e análise cinemática e cinética da marcha humana, em uma tentativa de superar as limitações da análise dinâmica tradicional e de encontrar novos indicadores clínicos para interpretar, de forma rápida e objetiva, a grande quantidade de informação obtida em laboratórios de marcha humana. Uma das redes neurais mais utilizadas para análise de marcha é o mapa de Kohonen ou mapa auto-organizado, baseado em aprendizado não supervisionado, sem uma definição prévia de grupos naturais que se formam. O uso deste tipo de rede neural tem mostrado benefícios significativos associados com a redução da dimensionalidade dos dados com mínima perda de conteúdo de informação e com o agrupamento de dados de acordo com suas semelhanças. Neste contexto, este trabalho apresenta um caso de aplicação de um mapa de Kohonen como classificador das características cinéticas da locomoção em indivíduos normais e com doença de Parkinson. Os resultados indicam que os grupos identificados no mapa são consistentes com a classificação feita por especialistas com base em análise dinâmica tradicional, que mostra o potencial desta técnica para diferenciar populações de indivíduos com marcha normal e de indivíduos com distúrbios da marcha de etiologia diferente.Fil: Rodrigo, Silvia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; ArgentinaFil: Lescano Pastor, Claudia Noemí. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Rodrigo, Rodolfo Horacio. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Ingeniería Electromecánica; ArgentinaSociedade Brasileira de Engenharia Biomédica2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211649Rodrigo, Silvia Elizabeth; Lescano Pastor, Claudia Noemí; Rodrigo, Rodolfo Horacio; Application of Kohonen maps to kinetic analysis of human gait; Sociedade Brasileira de Engenharia Biomédica; Revista Brasileira de Engenharia Biomedica; 28; 3; 9-2012; 217-2261517-3151CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scielo.br/j/rbeb/a/HDK7tr4R6hLmVdKDSsbLJBx/?lang=eninfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:09Zoai:ri.conicet.gov.ar:11336/211649instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:09.275CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Application of Kohonen maps to kinetic analysis of human gait
Aplicação de mapas de Kohonen à análise cinética da marcha humana
title Application of Kohonen maps to kinetic analysis of human gait
spellingShingle Application of Kohonen maps to kinetic analysis of human gait
Rodrigo, Silvia Elizabeth
Human gait
Parkinson's disease
Artificial neural network
Clustering
title_short Application of Kohonen maps to kinetic analysis of human gait
title_full Application of Kohonen maps to kinetic analysis of human gait
title_fullStr Application of Kohonen maps to kinetic analysis of human gait
title_full_unstemmed Application of Kohonen maps to kinetic analysis of human gait
title_sort Application of Kohonen maps to kinetic analysis of human gait
dc.creator.none.fl_str_mv Rodrigo, Silvia Elizabeth
Lescano Pastor, Claudia Noemí
Rodrigo, Rodolfo Horacio
author Rodrigo, Silvia Elizabeth
author_facet Rodrigo, Silvia Elizabeth
Lescano Pastor, Claudia Noemí
Rodrigo, Rodolfo Horacio
author_role author
author2 Lescano Pastor, Claudia Noemí
Rodrigo, Rodolfo Horacio
author2_role author
author
dc.subject.none.fl_str_mv Human gait
Parkinson's disease
Artificial neural network
Clustering
topic Human gait
Parkinson's disease
Artificial neural network
Clustering
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.6
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In recent years the use of artificial neural networks for classification and analysis of kinematic and kinetic characteristics of human locomotion has greatly increased. This happens in an attempt to overcome the limitations of traditional dynamic analysis and to find new clinical indicators for interpreting quick and objectively the large amount of information obtained in a gait lab. One of the most widely used neural networks for human gait analysis is the self-organizing or Kohonen map, based on unsupervised learning without prior definition of the formed natural groups. Among the advantages of using this type of neural network is the data dimensionality reduction, with minimal loss of information content, and the grouping of them in function of their similarities. Taking into account this, in this work an application case of a Kohonen map for clustering of locomotion kinetic characteristics in normal and Parkinson's disease individuals is presented. The results indicate that the groups identified by the map are consistent with the classification carried out by experts in function of traditional gait dynamic analysis, showing the potential of this technique for distinguishing between a population of individuals with normal gait and with gait disorders of different etiology.
Nos últimos anos, tem aumentado significativamente o uso de redes neurais artificiais para a classificação e análise cinemática e cinética da marcha humana, em uma tentativa de superar as limitações da análise dinâmica tradicional e de encontrar novos indicadores clínicos para interpretar, de forma rápida e objetiva, a grande quantidade de informação obtida em laboratórios de marcha humana. Uma das redes neurais mais utilizadas para análise de marcha é o mapa de Kohonen ou mapa auto-organizado, baseado em aprendizado não supervisionado, sem uma definição prévia de grupos naturais que se formam. O uso deste tipo de rede neural tem mostrado benefícios significativos associados com a redução da dimensionalidade dos dados com mínima perda de conteúdo de informação e com o agrupamento de dados de acordo com suas semelhanças. Neste contexto, este trabalho apresenta um caso de aplicação de um mapa de Kohonen como classificador das características cinéticas da locomoção em indivíduos normais e com doença de Parkinson. Os resultados indicam que os grupos identificados no mapa são consistentes com a classificação feita por especialistas com base em análise dinâmica tradicional, que mostra o potencial desta técnica para diferenciar populações de indivíduos com marcha normal e de indivíduos com distúrbios da marcha de etiologia diferente.
Fil: Rodrigo, Silvia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina
Fil: Lescano Pastor, Claudia Noemí. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Fil: Rodrigo, Rodolfo Horacio. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Ingeniería Electromecánica; Argentina
description In recent years the use of artificial neural networks for classification and analysis of kinematic and kinetic characteristics of human locomotion has greatly increased. This happens in an attempt to overcome the limitations of traditional dynamic analysis and to find new clinical indicators for interpreting quick and objectively the large amount of information obtained in a gait lab. One of the most widely used neural networks for human gait analysis is the self-organizing or Kohonen map, based on unsupervised learning without prior definition of the formed natural groups. Among the advantages of using this type of neural network is the data dimensionality reduction, with minimal loss of information content, and the grouping of them in function of their similarities. Taking into account this, in this work an application case of a Kohonen map for clustering of locomotion kinetic characteristics in normal and Parkinson's disease individuals is presented. The results indicate that the groups identified by the map are consistent with the classification carried out by experts in function of traditional gait dynamic analysis, showing the potential of this technique for distinguishing between a population of individuals with normal gait and with gait disorders of different etiology.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/211649
Rodrigo, Silvia Elizabeth; Lescano Pastor, Claudia Noemí; Rodrigo, Rodolfo Horacio; Application of Kohonen maps to kinetic analysis of human gait; Sociedade Brasileira de Engenharia Biomédica; Revista Brasileira de Engenharia Biomedica; 28; 3; 9-2012; 217-226
1517-3151
CONICET Digital
CONICET
url http://hdl.handle.net/11336/211649
identifier_str_mv Rodrigo, Silvia Elizabeth; Lescano Pastor, Claudia Noemí; Rodrigo, Rodolfo Horacio; Application of Kohonen maps to kinetic analysis of human gait; Sociedade Brasileira de Engenharia Biomédica; Revista Brasileira de Engenharia Biomedica; 28; 3; 9-2012; 217-226
1517-3151
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.scielo.br/j/rbeb/a/HDK7tr4R6hLmVdKDSsbLJBx/?lang=en
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981337658556416
score 12.48226