Numerical electroseismic modeling: A finite element approach
- Autores
- Santos, Juan Enrique; Zyserman, Fabio Ivan; Gauzellino, Patricia Mercedes
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Electroseismics is a procedure that uses the conversion of electromagnetic to seismic waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This work presents a collection of continuous and discrete time finite element procedures for electroseismic modeling in poroelastic fluid-saturated media. The model involves the simultaneous solution of Biot's equations of motion and Maxwell's equations in a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial conditions and employing absorbing boundary conditions at the artificial boundaries. The 3D case is formulated and analyzed in detail including results on the existence and uniqueness of the solution of the initial boundary value problem. Apriori error estimates for a continuous-time finite element procedure based on parallelepiped elements are derived, with Maxwell's equations discretized in space using the lowest order mixed finite element spaces of Nédélec, while for Biot's equations a nonconforming element for each component of the solid displacement vector and the vector part of the Raviart-Thomas- Nédélec of zero order for the fluid displacement vector are employed. A fully implicit discrete-time finite element method is also defined and its stability is demonstrated. The results are also extended to the case of tetrahedral elements. The 2D cases of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode) are also formulated and the corresponding finite element spaces are defined. The 1D SHTE initial boundary value problem is also formulated and approximately solved using a discrete-time finite element procedure, which was implemented to obtain the numerical examples presented.
Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Gauzellino, Patricia Mercedes. Universidad Nacional de La Plata; Argentina - Materia
-
Electromagnetics
Electroseismic Modeling
Finite Element Methods
Poroelasticity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/76416
Ver los metadatos del registro completo
id |
CONICETDig_8d8f950ae3db052860b806cc1a504305 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/76416 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Numerical electroseismic modeling: A finite element approachSantos, Juan EnriqueZyserman, Fabio IvanGauzellino, Patricia MercedesElectromagneticsElectroseismic ModelingFinite Element MethodsPoroelasticityhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Electroseismics is a procedure that uses the conversion of electromagnetic to seismic waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This work presents a collection of continuous and discrete time finite element procedures for electroseismic modeling in poroelastic fluid-saturated media. The model involves the simultaneous solution of Biot's equations of motion and Maxwell's equations in a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial conditions and employing absorbing boundary conditions at the artificial boundaries. The 3D case is formulated and analyzed in detail including results on the existence and uniqueness of the solution of the initial boundary value problem. Apriori error estimates for a continuous-time finite element procedure based on parallelepiped elements are derived, with Maxwell's equations discretized in space using the lowest order mixed finite element spaces of Nédélec, while for Biot's equations a nonconforming element for each component of the solid displacement vector and the vector part of the Raviart-Thomas- Nédélec of zero order for the fluid displacement vector are employed. A fully implicit discrete-time finite element method is also defined and its stability is demonstrated. The results are also extended to the case of tetrahedral elements. The 2D cases of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode) are also formulated and the corresponding finite element spaces are defined. The 1D SHTE initial boundary value problem is also formulated and approximately solved using a discrete-time finite element procedure, which was implemented to obtain the numerical examples presented.Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Gauzellino, Patricia Mercedes. Universidad Nacional de La Plata; ArgentinaElsevier Science Inc2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76416Santos, Juan Enrique; Zyserman, Fabio Ivan; Gauzellino, Patricia Mercedes; Numerical electroseismic modeling: A finite element approach; Elsevier Science Inc; Applied Mathematics and Computation; 218; 11; 2-2012; 6351-63740096-30031873-5649CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2011.12.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0096300311014615?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:14Zoai:ri.conicet.gov.ar:11336/76416instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:15.184CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Numerical electroseismic modeling: A finite element approach |
title |
Numerical electroseismic modeling: A finite element approach |
spellingShingle |
Numerical electroseismic modeling: A finite element approach Santos, Juan Enrique Electromagnetics Electroseismic Modeling Finite Element Methods Poroelasticity |
title_short |
Numerical electroseismic modeling: A finite element approach |
title_full |
Numerical electroseismic modeling: A finite element approach |
title_fullStr |
Numerical electroseismic modeling: A finite element approach |
title_full_unstemmed |
Numerical electroseismic modeling: A finite element approach |
title_sort |
Numerical electroseismic modeling: A finite element approach |
dc.creator.none.fl_str_mv |
Santos, Juan Enrique Zyserman, Fabio Ivan Gauzellino, Patricia Mercedes |
author |
Santos, Juan Enrique |
author_facet |
Santos, Juan Enrique Zyserman, Fabio Ivan Gauzellino, Patricia Mercedes |
author_role |
author |
author2 |
Zyserman, Fabio Ivan Gauzellino, Patricia Mercedes |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Electromagnetics Electroseismic Modeling Finite Element Methods Poroelasticity |
topic |
Electromagnetics Electroseismic Modeling Finite Element Methods Poroelasticity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Electroseismics is a procedure that uses the conversion of electromagnetic to seismic waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This work presents a collection of continuous and discrete time finite element procedures for electroseismic modeling in poroelastic fluid-saturated media. The model involves the simultaneous solution of Biot's equations of motion and Maxwell's equations in a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial conditions and employing absorbing boundary conditions at the artificial boundaries. The 3D case is formulated and analyzed in detail including results on the existence and uniqueness of the solution of the initial boundary value problem. Apriori error estimates for a continuous-time finite element procedure based on parallelepiped elements are derived, with Maxwell's equations discretized in space using the lowest order mixed finite element spaces of Nédélec, while for Biot's equations a nonconforming element for each component of the solid displacement vector and the vector part of the Raviart-Thomas- Nédélec of zero order for the fluid displacement vector are employed. A fully implicit discrete-time finite element method is also defined and its stability is demonstrated. The results are also extended to the case of tetrahedral elements. The 2D cases of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode) are also formulated and the corresponding finite element spaces are defined. The 1D SHTE initial boundary value problem is also formulated and approximately solved using a discrete-time finite element procedure, which was implemented to obtain the numerical examples presented. Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina Fil: Gauzellino, Patricia Mercedes. Universidad Nacional de La Plata; Argentina |
description |
Electroseismics is a procedure that uses the conversion of electromagnetic to seismic waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This work presents a collection of continuous and discrete time finite element procedures for electroseismic modeling in poroelastic fluid-saturated media. The model involves the simultaneous solution of Biot's equations of motion and Maxwell's equations in a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial conditions and employing absorbing boundary conditions at the artificial boundaries. The 3D case is formulated and analyzed in detail including results on the existence and uniqueness of the solution of the initial boundary value problem. Apriori error estimates for a continuous-time finite element procedure based on parallelepiped elements are derived, with Maxwell's equations discretized in space using the lowest order mixed finite element spaces of Nédélec, while for Biot's equations a nonconforming element for each component of the solid displacement vector and the vector part of the Raviart-Thomas- Nédélec of zero order for the fluid displacement vector are employed. A fully implicit discrete-time finite element method is also defined and its stability is demonstrated. The results are also extended to the case of tetrahedral elements. The 2D cases of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode) are also formulated and the corresponding finite element spaces are defined. The 1D SHTE initial boundary value problem is also formulated and approximately solved using a discrete-time finite element procedure, which was implemented to obtain the numerical examples presented. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/76416 Santos, Juan Enrique; Zyserman, Fabio Ivan; Gauzellino, Patricia Mercedes; Numerical electroseismic modeling: A finite element approach; Elsevier Science Inc; Applied Mathematics and Computation; 218; 11; 2-2012; 6351-6374 0096-3003 1873-5649 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/76416 |
identifier_str_mv |
Santos, Juan Enrique; Zyserman, Fabio Ivan; Gauzellino, Patricia Mercedes; Numerical electroseismic modeling: A finite element approach; Elsevier Science Inc; Applied Mathematics and Computation; 218; 11; 2-2012; 6351-6374 0096-3003 1873-5649 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2011.12.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0096300311014615?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614347456774144 |
score |
13.070432 |