Numerical electroseismic modeling: A finite element approach

Autores
Santos, Juan Enrique; Zyserman, Fabio Ivan; Gauzellino, Patricia Mercedes
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electroseismics is a procedure that uses the conversion of electromagnetic to seismic waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This work presents a collection of continuous and discrete time finite element procedures for electroseismic modeling in poroelastic fluid-saturated media. The model involves the simultaneous solution of Biot's equations of motion and Maxwell's equations in a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial conditions and employing absorbing boundary conditions at the artificial boundaries. The 3D case is formulated and analyzed in detail including results on the existence and uniqueness of the solution of the initial boundary value problem. Apriori error estimates for a continuous-time finite element procedure based on parallelepiped elements are derived, with Maxwell's equations discretized in space using the lowest order mixed finite element spaces of Nédélec, while for Biot's equations a nonconforming element for each component of the solid displacement vector and the vector part of the Raviart-Thomas- Nédélec of zero order for the fluid displacement vector are employed. A fully implicit discrete-time finite element method is also defined and its stability is demonstrated. The results are also extended to the case of tetrahedral elements. The 2D cases of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode) are also formulated and the corresponding finite element spaces are defined. The 1D SHTE initial boundary value problem is also formulated and approximately solved using a discrete-time finite element procedure, which was implemented to obtain the numerical examples presented.
Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Gauzellino, Patricia Mercedes. Universidad Nacional de La Plata; Argentina
Materia
Electromagnetics
Electroseismic Modeling
Finite Element Methods
Poroelasticity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76416

id CONICETDig_8d8f950ae3db052860b806cc1a504305
oai_identifier_str oai:ri.conicet.gov.ar:11336/76416
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical electroseismic modeling: A finite element approachSantos, Juan EnriqueZyserman, Fabio IvanGauzellino, Patricia MercedesElectromagneticsElectroseismic ModelingFinite Element MethodsPoroelasticityhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Electroseismics is a procedure that uses the conversion of electromagnetic to seismic waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This work presents a collection of continuous and discrete time finite element procedures for electroseismic modeling in poroelastic fluid-saturated media. The model involves the simultaneous solution of Biot's equations of motion and Maxwell's equations in a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial conditions and employing absorbing boundary conditions at the artificial boundaries. The 3D case is formulated and analyzed in detail including results on the existence and uniqueness of the solution of the initial boundary value problem. Apriori error estimates for a continuous-time finite element procedure based on parallelepiped elements are derived, with Maxwell's equations discretized in space using the lowest order mixed finite element spaces of Nédélec, while for Biot's equations a nonconforming element for each component of the solid displacement vector and the vector part of the Raviart-Thomas- Nédélec of zero order for the fluid displacement vector are employed. A fully implicit discrete-time finite element method is also defined and its stability is demonstrated. The results are also extended to the case of tetrahedral elements. The 2D cases of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode) are also formulated and the corresponding finite element spaces are defined. The 1D SHTE initial boundary value problem is also formulated and approximately solved using a discrete-time finite element procedure, which was implemented to obtain the numerical examples presented.Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Gauzellino, Patricia Mercedes. Universidad Nacional de La Plata; ArgentinaElsevier Science Inc2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76416Santos, Juan Enrique; Zyserman, Fabio Ivan; Gauzellino, Patricia Mercedes; Numerical electroseismic modeling: A finite element approach; Elsevier Science Inc; Applied Mathematics and Computation; 218; 11; 2-2012; 6351-63740096-30031873-5649CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2011.12.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0096300311014615?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:14Zoai:ri.conicet.gov.ar:11336/76416instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:15.184CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical electroseismic modeling: A finite element approach
title Numerical electroseismic modeling: A finite element approach
spellingShingle Numerical electroseismic modeling: A finite element approach
Santos, Juan Enrique
Electromagnetics
Electroseismic Modeling
Finite Element Methods
Poroelasticity
title_short Numerical electroseismic modeling: A finite element approach
title_full Numerical electroseismic modeling: A finite element approach
title_fullStr Numerical electroseismic modeling: A finite element approach
title_full_unstemmed Numerical electroseismic modeling: A finite element approach
title_sort Numerical electroseismic modeling: A finite element approach
dc.creator.none.fl_str_mv Santos, Juan Enrique
Zyserman, Fabio Ivan
Gauzellino, Patricia Mercedes
author Santos, Juan Enrique
author_facet Santos, Juan Enrique
Zyserman, Fabio Ivan
Gauzellino, Patricia Mercedes
author_role author
author2 Zyserman, Fabio Ivan
Gauzellino, Patricia Mercedes
author2_role author
author
dc.subject.none.fl_str_mv Electromagnetics
Electroseismic Modeling
Finite Element Methods
Poroelasticity
topic Electromagnetics
Electroseismic Modeling
Finite Element Methods
Poroelasticity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Electroseismics is a procedure that uses the conversion of electromagnetic to seismic waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This work presents a collection of continuous and discrete time finite element procedures for electroseismic modeling in poroelastic fluid-saturated media. The model involves the simultaneous solution of Biot's equations of motion and Maxwell's equations in a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial conditions and employing absorbing boundary conditions at the artificial boundaries. The 3D case is formulated and analyzed in detail including results on the existence and uniqueness of the solution of the initial boundary value problem. Apriori error estimates for a continuous-time finite element procedure based on parallelepiped elements are derived, with Maxwell's equations discretized in space using the lowest order mixed finite element spaces of Nédélec, while for Biot's equations a nonconforming element for each component of the solid displacement vector and the vector part of the Raviart-Thomas- Nédélec of zero order for the fluid displacement vector are employed. A fully implicit discrete-time finite element method is also defined and its stability is demonstrated. The results are also extended to the case of tetrahedral elements. The 2D cases of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode) are also formulated and the corresponding finite element spaces are defined. The 1D SHTE initial boundary value problem is also formulated and approximately solved using a discrete-time finite element procedure, which was implemented to obtain the numerical examples presented.
Fil: Santos, Juan Enrique. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Gauzellino, Patricia Mercedes. Universidad Nacional de La Plata; Argentina
description Electroseismics is a procedure that uses the conversion of electromagnetic to seismic waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This work presents a collection of continuous and discrete time finite element procedures for electroseismic modeling in poroelastic fluid-saturated media. The model involves the simultaneous solution of Biot's equations of motion and Maxwell's equations in a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial conditions and employing absorbing boundary conditions at the artificial boundaries. The 3D case is formulated and analyzed in detail including results on the existence and uniqueness of the solution of the initial boundary value problem. Apriori error estimates for a continuous-time finite element procedure based on parallelepiped elements are derived, with Maxwell's equations discretized in space using the lowest order mixed finite element spaces of Nédélec, while for Biot's equations a nonconforming element for each component of the solid displacement vector and the vector part of the Raviart-Thomas- Nédélec of zero order for the fluid displacement vector are employed. A fully implicit discrete-time finite element method is also defined and its stability is demonstrated. The results are also extended to the case of tetrahedral elements. The 2D cases of compressional and vertically polarized shear waves coupled with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode) are also formulated and the corresponding finite element spaces are defined. The 1D SHTE initial boundary value problem is also formulated and approximately solved using a discrete-time finite element procedure, which was implemented to obtain the numerical examples presented.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76416
Santos, Juan Enrique; Zyserman, Fabio Ivan; Gauzellino, Patricia Mercedes; Numerical electroseismic modeling: A finite element approach; Elsevier Science Inc; Applied Mathematics and Computation; 218; 11; 2-2012; 6351-6374
0096-3003
1873-5649
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76416
identifier_str_mv Santos, Juan Enrique; Zyserman, Fabio Ivan; Gauzellino, Patricia Mercedes; Numerical electroseismic modeling: A finite element approach; Elsevier Science Inc; Applied Mathematics and Computation; 218; 11; 2-2012; 6351-6374
0096-3003
1873-5649
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2011.12.003
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0096300311014615?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614347456774144
score 13.070432