Complex trait‒environment relationships underlie the structure of forest plant communities
- Autores
- Rolhauser, Andrés Guillermo; Waller, Donald M.; Tucker, Caroline M.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships.
Fil: Rolhauser, Andrés Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Waller, Donald M.. University of Wisconsin; Estados Unidos
Fil: Tucker, Caroline M.. University of North Carolina; Estados Unidos - Materia
-
CLIMATE SEASONALITY
COMMUNITY ASSEMBLY
FUNCTIONAL TRAIT ANALYSIS
GENERALIZED LINEAR MIXED MODEL
LEAF TRAITS
MEAN ANNUAL TEMPERATURE
PLANT HEIGHT
SOIL TEXTURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/168020
Ver los metadatos del registro completo
id |
CONICETDig_8d4daedf9cdeacccc8dcb909429f5bb2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/168020 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Complex trait‒environment relationships underlie the structure of forest plant communitiesRolhauser, Andrés GuillermoWaller, Donald M.Tucker, Caroline M.CLIMATE SEASONALITYCOMMUNITY ASSEMBLYFUNCTIONAL TRAIT ANALYSISGENERALIZED LINEAR MIXED MODELLEAF TRAITSMEAN ANNUAL TEMPERATUREPLANT HEIGHTSOIL TEXTUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships.Fil: Rolhauser, Andrés Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Waller, Donald M.. University of Wisconsin; Estados UnidosFil: Tucker, Caroline M.. University of North Carolina; Estados UnidosWiley Blackwell Publishing, Inc2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168020Rolhauser, Andrés Guillermo; Waller, Donald M.; Tucker, Caroline M.; Complex trait‒environment relationships underlie the structure of forest plant communities; Wiley Blackwell Publishing, Inc; Journal of Ecology; 109; 11; 8-2021; 3794-38060022-0477CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.13757info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2745.13757info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:57Zoai:ri.conicet.gov.ar:11336/168020instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:58.2CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Complex trait‒environment relationships underlie the structure of forest plant communities |
title |
Complex trait‒environment relationships underlie the structure of forest plant communities |
spellingShingle |
Complex trait‒environment relationships underlie the structure of forest plant communities Rolhauser, Andrés Guillermo CLIMATE SEASONALITY COMMUNITY ASSEMBLY FUNCTIONAL TRAIT ANALYSIS GENERALIZED LINEAR MIXED MODEL LEAF TRAITS MEAN ANNUAL TEMPERATURE PLANT HEIGHT SOIL TEXTURE |
title_short |
Complex trait‒environment relationships underlie the structure of forest plant communities |
title_full |
Complex trait‒environment relationships underlie the structure of forest plant communities |
title_fullStr |
Complex trait‒environment relationships underlie the structure of forest plant communities |
title_full_unstemmed |
Complex trait‒environment relationships underlie the structure of forest plant communities |
title_sort |
Complex trait‒environment relationships underlie the structure of forest plant communities |
dc.creator.none.fl_str_mv |
Rolhauser, Andrés Guillermo Waller, Donald M. Tucker, Caroline M. |
author |
Rolhauser, Andrés Guillermo |
author_facet |
Rolhauser, Andrés Guillermo Waller, Donald M. Tucker, Caroline M. |
author_role |
author |
author2 |
Waller, Donald M. Tucker, Caroline M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CLIMATE SEASONALITY COMMUNITY ASSEMBLY FUNCTIONAL TRAIT ANALYSIS GENERALIZED LINEAR MIXED MODEL LEAF TRAITS MEAN ANNUAL TEMPERATURE PLANT HEIGHT SOIL TEXTURE |
topic |
CLIMATE SEASONALITY COMMUNITY ASSEMBLY FUNCTIONAL TRAIT ANALYSIS GENERALIZED LINEAR MIXED MODEL LEAF TRAITS MEAN ANNUAL TEMPERATURE PLANT HEIGHT SOIL TEXTURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships. Fil: Rolhauser, Andrés Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Waller, Donald M.. University of Wisconsin; Estados Unidos Fil: Tucker, Caroline M.. University of North Carolina; Estados Unidos |
description |
Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/168020 Rolhauser, Andrés Guillermo; Waller, Donald M.; Tucker, Caroline M.; Complex trait‒environment relationships underlie the structure of forest plant communities; Wiley Blackwell Publishing, Inc; Journal of Ecology; 109; 11; 8-2021; 3794-3806 0022-0477 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/168020 |
identifier_str_mv |
Rolhauser, Andrés Guillermo; Waller, Donald M.; Tucker, Caroline M.; Complex trait‒environment relationships underlie the structure of forest plant communities; Wiley Blackwell Publishing, Inc; Journal of Ecology; 109; 11; 8-2021; 3794-3806 0022-0477 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.13757 info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2745.13757 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981326832009216 |
score |
12.48226 |