Complex trait‒environment relationships underlie the structure of forest plant communities

Autores
Rolhauser, Andrés Guillermo; Waller, Donald M.; Tucker, Caroline M.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships.
Fil: Rolhauser, Andrés Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Waller, Donald M.. University of Wisconsin; Estados Unidos
Fil: Tucker, Caroline M.. University of North Carolina; Estados Unidos
Materia
CLIMATE SEASONALITY
COMMUNITY ASSEMBLY
FUNCTIONAL TRAIT ANALYSIS
GENERALIZED LINEAR MIXED MODEL
LEAF TRAITS
MEAN ANNUAL TEMPERATURE
PLANT HEIGHT
SOIL TEXTURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/168020

id CONICETDig_8d4daedf9cdeacccc8dcb909429f5bb2
oai_identifier_str oai:ri.conicet.gov.ar:11336/168020
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Complex trait‒environment relationships underlie the structure of forest plant communitiesRolhauser, Andrés GuillermoWaller, Donald M.Tucker, Caroline M.CLIMATE SEASONALITYCOMMUNITY ASSEMBLYFUNCTIONAL TRAIT ANALYSISGENERALIZED LINEAR MIXED MODELLEAF TRAITSMEAN ANNUAL TEMPERATUREPLANT HEIGHTSOIL TEXTUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships.Fil: Rolhauser, Andrés Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Waller, Donald M.. University of Wisconsin; Estados UnidosFil: Tucker, Caroline M.. University of North Carolina; Estados UnidosWiley Blackwell Publishing, Inc2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168020Rolhauser, Andrés Guillermo; Waller, Donald M.; Tucker, Caroline M.; Complex trait‒environment relationships underlie the structure of forest plant communities; Wiley Blackwell Publishing, Inc; Journal of Ecology; 109; 11; 8-2021; 3794-38060022-0477CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.13757info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2745.13757info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:57Zoai:ri.conicet.gov.ar:11336/168020instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:58.2CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Complex trait‒environment relationships underlie the structure of forest plant communities
title Complex trait‒environment relationships underlie the structure of forest plant communities
spellingShingle Complex trait‒environment relationships underlie the structure of forest plant communities
Rolhauser, Andrés Guillermo
CLIMATE SEASONALITY
COMMUNITY ASSEMBLY
FUNCTIONAL TRAIT ANALYSIS
GENERALIZED LINEAR MIXED MODEL
LEAF TRAITS
MEAN ANNUAL TEMPERATURE
PLANT HEIGHT
SOIL TEXTURE
title_short Complex trait‒environment relationships underlie the structure of forest plant communities
title_full Complex trait‒environment relationships underlie the structure of forest plant communities
title_fullStr Complex trait‒environment relationships underlie the structure of forest plant communities
title_full_unstemmed Complex trait‒environment relationships underlie the structure of forest plant communities
title_sort Complex trait‒environment relationships underlie the structure of forest plant communities
dc.creator.none.fl_str_mv Rolhauser, Andrés Guillermo
Waller, Donald M.
Tucker, Caroline M.
author Rolhauser, Andrés Guillermo
author_facet Rolhauser, Andrés Guillermo
Waller, Donald M.
Tucker, Caroline M.
author_role author
author2 Waller, Donald M.
Tucker, Caroline M.
author2_role author
author
dc.subject.none.fl_str_mv CLIMATE SEASONALITY
COMMUNITY ASSEMBLY
FUNCTIONAL TRAIT ANALYSIS
GENERALIZED LINEAR MIXED MODEL
LEAF TRAITS
MEAN ANNUAL TEMPERATURE
PLANT HEIGHT
SOIL TEXTURE
topic CLIMATE SEASONALITY
COMMUNITY ASSEMBLY
FUNCTIONAL TRAIT ANALYSIS
GENERALIZED LINEAR MIXED MODEL
LEAF TRAITS
MEAN ANNUAL TEMPERATURE
PLANT HEIGHT
SOIL TEXTURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships.
Fil: Rolhauser, Andrés Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Waller, Donald M.. University of Wisconsin; Estados Unidos
Fil: Tucker, Caroline M.. University of North Carolina; Estados Unidos
description Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/168020
Rolhauser, Andrés Guillermo; Waller, Donald M.; Tucker, Caroline M.; Complex trait‒environment relationships underlie the structure of forest plant communities; Wiley Blackwell Publishing, Inc; Journal of Ecology; 109; 11; 8-2021; 3794-3806
0022-0477
CONICET Digital
CONICET
url http://hdl.handle.net/11336/168020
identifier_str_mv Rolhauser, Andrés Guillermo; Waller, Donald M.; Tucker, Caroline M.; Complex trait‒environment relationships underlie the structure of forest plant communities; Wiley Blackwell Publishing, Inc; Journal of Ecology; 109; 11; 8-2021; 3794-3806
0022-0477
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.13757
info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2745.13757
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981326832009216
score 12.48226