Two examples of vanishing and squeezing in K1
- Autores
- Ellis, Eugenia; Rodríguez Cirone, Emanuel Darío; Tartaglia, Gisela; Vega, Santiago Javier
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Controlled topology is one of the main tools for proving the isomorphism conjecture concerning the algebraic K-theory of group rings. In this article we dive into this machinery in two examples: when the group is infinite cyclic and when it is the infinite dihedral group in both cases with the family of finite subgroups. We prove a vanishing theorem and show how to explicitly squeeze the generators of these groups in K1. For the infinite cyclic group, when taking coefficients in a regular ring, we get a squeezing result for every element of K1; this follows from the well-known result of Bass, Heller and Swan.
Fil: Ellis, Eugenia. Universidad de la República; Uruguay
Fil: Rodríguez Cirone, Emanuel Darío. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Vega, Santiago Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ASSEMBLY MAPS
CONTROLLED TOPOLOGY
BASS-HELLER-SWAN THEOREM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136985
Ver los metadatos del registro completo
| id |
CONICETDig_8d46930c37442f64fbfbeb5926e1d476 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136985 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Two examples of vanishing and squeezing in K1Ellis, EugeniaRodríguez Cirone, Emanuel DaríoTartaglia, GiselaVega, Santiago JavierASSEMBLY MAPSCONTROLLED TOPOLOGYBASS-HELLER-SWAN THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Controlled topology is one of the main tools for proving the isomorphism conjecture concerning the algebraic K-theory of group rings. In this article we dive into this machinery in two examples: when the group is infinite cyclic and when it is the infinite dihedral group in both cases with the family of finite subgroups. We prove a vanishing theorem and show how to explicitly squeeze the generators of these groups in K1. For the infinite cyclic group, when taking coefficients in a regular ring, we get a squeezing result for every element of K1; this follows from the well-known result of Bass, Heller and Swan.Fil: Ellis, Eugenia. Universidad de la República; UruguayFil: Rodríguez Cirone, Emanuel Darío. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Vega, Santiago Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaState University of New York2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136985Ellis, Eugenia; Rodríguez Cirone, Emanuel Darío; Tartaglia, Gisela; Vega, Santiago Javier; Two examples of vanishing and squeezing in K1; State University of New York; New York Journal of Mathematics; 26; 6-2020; 607-6351076-9803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://nyjm.albany.edu/j/2020/26-28.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.06135info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:58:38Zoai:ri.conicet.gov.ar:11336/136985instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:58:38.827CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Two examples of vanishing and squeezing in K1 |
| title |
Two examples of vanishing and squeezing in K1 |
| spellingShingle |
Two examples of vanishing and squeezing in K1 Ellis, Eugenia ASSEMBLY MAPS CONTROLLED TOPOLOGY BASS-HELLER-SWAN THEOREM |
| title_short |
Two examples of vanishing and squeezing in K1 |
| title_full |
Two examples of vanishing and squeezing in K1 |
| title_fullStr |
Two examples of vanishing and squeezing in K1 |
| title_full_unstemmed |
Two examples of vanishing and squeezing in K1 |
| title_sort |
Two examples of vanishing and squeezing in K1 |
| dc.creator.none.fl_str_mv |
Ellis, Eugenia Rodríguez Cirone, Emanuel Darío Tartaglia, Gisela Vega, Santiago Javier |
| author |
Ellis, Eugenia |
| author_facet |
Ellis, Eugenia Rodríguez Cirone, Emanuel Darío Tartaglia, Gisela Vega, Santiago Javier |
| author_role |
author |
| author2 |
Rodríguez Cirone, Emanuel Darío Tartaglia, Gisela Vega, Santiago Javier |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
ASSEMBLY MAPS CONTROLLED TOPOLOGY BASS-HELLER-SWAN THEOREM |
| topic |
ASSEMBLY MAPS CONTROLLED TOPOLOGY BASS-HELLER-SWAN THEOREM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Controlled topology is one of the main tools for proving the isomorphism conjecture concerning the algebraic K-theory of group rings. In this article we dive into this machinery in two examples: when the group is infinite cyclic and when it is the infinite dihedral group in both cases with the family of finite subgroups. We prove a vanishing theorem and show how to explicitly squeeze the generators of these groups in K1. For the infinite cyclic group, when taking coefficients in a regular ring, we get a squeezing result for every element of K1; this follows from the well-known result of Bass, Heller and Swan. Fil: Ellis, Eugenia. Universidad de la República; Uruguay Fil: Rodríguez Cirone, Emanuel Darío. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Vega, Santiago Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
Controlled topology is one of the main tools for proving the isomorphism conjecture concerning the algebraic K-theory of group rings. In this article we dive into this machinery in two examples: when the group is infinite cyclic and when it is the infinite dihedral group in both cases with the family of finite subgroups. We prove a vanishing theorem and show how to explicitly squeeze the generators of these groups in K1. For the infinite cyclic group, when taking coefficients in a regular ring, we get a squeezing result for every element of K1; this follows from the well-known result of Bass, Heller and Swan. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136985 Ellis, Eugenia; Rodríguez Cirone, Emanuel Darío; Tartaglia, Gisela; Vega, Santiago Javier; Two examples of vanishing and squeezing in K1; State University of New York; New York Journal of Mathematics; 26; 6-2020; 607-635 1076-9803 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/136985 |
| identifier_str_mv |
Ellis, Eugenia; Rodríguez Cirone, Emanuel Darío; Tartaglia, Gisela; Vega, Santiago Javier; Two examples of vanishing and squeezing in K1; State University of New York; New York Journal of Mathematics; 26; 6-2020; 607-635 1076-9803 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://nyjm.albany.edu/j/2020/26-28.html info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.06135 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
State University of New York |
| publisher.none.fl_str_mv |
State University of New York |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598417153982464 |
| score |
13.25334 |