Comparison of the fluidized state stability from radioactive particle tracking results
- Autores
- Salierno, Gabriel Leonardo; Gradizek, Anton; Maestri, Mauricio Leonardo; Picabea, Julia Valentina; Cassanello, Miryan; De Blasio, Cataldo; Cardona, Maria Angelica; Hojman, Daniel Leonardo; Somacal, Héctor Rubén
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.
Fil: Salierno, Gabriel Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: Gradizek, Anton. Joef Stefan Institute; Eslovenia
Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: Picabea, Julia Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: De Blasio, Cataldo. Åbo Akademi University; Finlandia
Fil: Cardona, Maria Angelica. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Somacal, Héctor Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina - Materia
-
FLUIDIZATION
INFORMATION GEOMETRY
RADIOACTIVE PARTICLE TRACKING
STABILITY CRITERIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151917
Ver los metadatos del registro completo
id |
CONICETDig_8d107d4783e3048a1806c64e28eaa1a4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151917 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comparison of the fluidized state stability from radioactive particle tracking resultsSalierno, Gabriel LeonardoGradizek, AntonMaestri, Mauricio LeonardoPicabea, Julia ValentinaCassanello, MiryanDe Blasio, CataldoCardona, Maria AngelicaHojman, Daniel LeonardoSomacal, Héctor RubénFLUIDIZATIONINFORMATION GEOMETRYRADIOACTIVE PARTICLE TRACKINGSTABILITY CRITERIAhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.Fil: Salierno, Gabriel Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Gradizek, Anton. Joef Stefan Institute; EsloveniaFil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Picabea, Julia Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: De Blasio, Cataldo. Åbo Akademi University; FinlandiaFil: Cardona, Maria Angelica. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; ArgentinaFil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Somacal, Héctor Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; ArgentinaMolecular Diversity Preservation International2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151917Salierno, Gabriel Leonardo; Gradizek, Anton; Maestri, Mauricio Leonardo; Picabea, Julia Valentina; Cassanello, Miryan; et al.; Comparison of the fluidized state stability from radioactive particle tracking results; Molecular Diversity Preservation International; ChemEngineering; 5; 4; 10-2021; 1-122305-7084CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2305-7084/5/4/65info:eu-repo/semantics/altIdentifier/doi/10.3390/chemengineering5040065info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:46Zoai:ri.conicet.gov.ar:11336/151917instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:46.651CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comparison of the fluidized state stability from radioactive particle tracking results |
title |
Comparison of the fluidized state stability from radioactive particle tracking results |
spellingShingle |
Comparison of the fluidized state stability from radioactive particle tracking results Salierno, Gabriel Leonardo FLUIDIZATION INFORMATION GEOMETRY RADIOACTIVE PARTICLE TRACKING STABILITY CRITERIA |
title_short |
Comparison of the fluidized state stability from radioactive particle tracking results |
title_full |
Comparison of the fluidized state stability from radioactive particle tracking results |
title_fullStr |
Comparison of the fluidized state stability from radioactive particle tracking results |
title_full_unstemmed |
Comparison of the fluidized state stability from radioactive particle tracking results |
title_sort |
Comparison of the fluidized state stability from radioactive particle tracking results |
dc.creator.none.fl_str_mv |
Salierno, Gabriel Leonardo Gradizek, Anton Maestri, Mauricio Leonardo Picabea, Julia Valentina Cassanello, Miryan De Blasio, Cataldo Cardona, Maria Angelica Hojman, Daniel Leonardo Somacal, Héctor Rubén |
author |
Salierno, Gabriel Leonardo |
author_facet |
Salierno, Gabriel Leonardo Gradizek, Anton Maestri, Mauricio Leonardo Picabea, Julia Valentina Cassanello, Miryan De Blasio, Cataldo Cardona, Maria Angelica Hojman, Daniel Leonardo Somacal, Héctor Rubén |
author_role |
author |
author2 |
Gradizek, Anton Maestri, Mauricio Leonardo Picabea, Julia Valentina Cassanello, Miryan De Blasio, Cataldo Cardona, Maria Angelica Hojman, Daniel Leonardo Somacal, Héctor Rubén |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
FLUIDIZATION INFORMATION GEOMETRY RADIOACTIVE PARTICLE TRACKING STABILITY CRITERIA |
topic |
FLUIDIZATION INFORMATION GEOMETRY RADIOACTIVE PARTICLE TRACKING STABILITY CRITERIA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment. Fil: Salierno, Gabriel Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina Fil: Gradizek, Anton. Joef Stefan Institute; Eslovenia Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina Fil: Picabea, Julia Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina Fil: De Blasio, Cataldo. Åbo Akademi University; Finlandia Fil: Cardona, Maria Angelica. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina Fil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Somacal, Héctor Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina |
description |
Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151917 Salierno, Gabriel Leonardo; Gradizek, Anton; Maestri, Mauricio Leonardo; Picabea, Julia Valentina; Cassanello, Miryan; et al.; Comparison of the fluidized state stability from radioactive particle tracking results; Molecular Diversity Preservation International; ChemEngineering; 5; 4; 10-2021; 1-12 2305-7084 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151917 |
identifier_str_mv |
Salierno, Gabriel Leonardo; Gradizek, Anton; Maestri, Mauricio Leonardo; Picabea, Julia Valentina; Cassanello, Miryan; et al.; Comparison of the fluidized state stability from radioactive particle tracking results; Molecular Diversity Preservation International; ChemEngineering; 5; 4; 10-2021; 1-12 2305-7084 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2305-7084/5/4/65 info:eu-repo/semantics/altIdentifier/doi/10.3390/chemengineering5040065 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613617229496320 |
score |
13.070432 |