Comparison of the fluidized state stability from radioactive particle tracking results

Autores
Salierno, Gabriel Leonardo; Gradizek, Anton; Maestri, Mauricio Leonardo; Picabea, Julia Valentina; Cassanello, Miryan; De Blasio, Cataldo; Cardona, Maria Angelica; Hojman, Daniel Leonardo; Somacal, Héctor Rubén
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.
Fil: Salierno, Gabriel Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: Gradizek, Anton. Joef Stefan Institute; Eslovenia
Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: Picabea, Julia Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: De Blasio, Cataldo. Åbo Akademi University; Finlandia
Fil: Cardona, Maria Angelica. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Somacal, Héctor Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Materia
FLUIDIZATION
INFORMATION GEOMETRY
RADIOACTIVE PARTICLE TRACKING
STABILITY CRITERIA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151917

id CONICETDig_8d107d4783e3048a1806c64e28eaa1a4
oai_identifier_str oai:ri.conicet.gov.ar:11336/151917
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparison of the fluidized state stability from radioactive particle tracking resultsSalierno, Gabriel LeonardoGradizek, AntonMaestri, Mauricio LeonardoPicabea, Julia ValentinaCassanello, MiryanDe Blasio, CataldoCardona, Maria AngelicaHojman, Daniel LeonardoSomacal, Héctor RubénFLUIDIZATIONINFORMATION GEOMETRYRADIOACTIVE PARTICLE TRACKINGSTABILITY CRITERIAhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.Fil: Salierno, Gabriel Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Gradizek, Anton. Joef Stefan Institute; EsloveniaFil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Picabea, Julia Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: De Blasio, Cataldo. Åbo Akademi University; FinlandiaFil: Cardona, Maria Angelica. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; ArgentinaFil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Somacal, Héctor Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; ArgentinaMolecular Diversity Preservation International2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151917Salierno, Gabriel Leonardo; Gradizek, Anton; Maestri, Mauricio Leonardo; Picabea, Julia Valentina; Cassanello, Miryan; et al.; Comparison of the fluidized state stability from radioactive particle tracking results; Molecular Diversity Preservation International; ChemEngineering; 5; 4; 10-2021; 1-122305-7084CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2305-7084/5/4/65info:eu-repo/semantics/altIdentifier/doi/10.3390/chemengineering5040065info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:46Zoai:ri.conicet.gov.ar:11336/151917instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:46.651CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparison of the fluidized state stability from radioactive particle tracking results
title Comparison of the fluidized state stability from radioactive particle tracking results
spellingShingle Comparison of the fluidized state stability from radioactive particle tracking results
Salierno, Gabriel Leonardo
FLUIDIZATION
INFORMATION GEOMETRY
RADIOACTIVE PARTICLE TRACKING
STABILITY CRITERIA
title_short Comparison of the fluidized state stability from radioactive particle tracking results
title_full Comparison of the fluidized state stability from radioactive particle tracking results
title_fullStr Comparison of the fluidized state stability from radioactive particle tracking results
title_full_unstemmed Comparison of the fluidized state stability from radioactive particle tracking results
title_sort Comparison of the fluidized state stability from radioactive particle tracking results
dc.creator.none.fl_str_mv Salierno, Gabriel Leonardo
Gradizek, Anton
Maestri, Mauricio Leonardo
Picabea, Julia Valentina
Cassanello, Miryan
De Blasio, Cataldo
Cardona, Maria Angelica
Hojman, Daniel Leonardo
Somacal, Héctor Rubén
author Salierno, Gabriel Leonardo
author_facet Salierno, Gabriel Leonardo
Gradizek, Anton
Maestri, Mauricio Leonardo
Picabea, Julia Valentina
Cassanello, Miryan
De Blasio, Cataldo
Cardona, Maria Angelica
Hojman, Daniel Leonardo
Somacal, Héctor Rubén
author_role author
author2 Gradizek, Anton
Maestri, Mauricio Leonardo
Picabea, Julia Valentina
Cassanello, Miryan
De Blasio, Cataldo
Cardona, Maria Angelica
Hojman, Daniel Leonardo
Somacal, Héctor Rubén
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv FLUIDIZATION
INFORMATION GEOMETRY
RADIOACTIVE PARTICLE TRACKING
STABILITY CRITERIA
topic FLUIDIZATION
INFORMATION GEOMETRY
RADIOACTIVE PARTICLE TRACKING
STABILITY CRITERIA
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.
Fil: Salierno, Gabriel Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: Gradizek, Anton. Joef Stefan Institute; Eslovenia
Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: Picabea, Julia Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: De Blasio, Cataldo. Åbo Akademi University; Finlandia
Fil: Cardona, Maria Angelica. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Somacal, Héctor Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
description Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.
publishDate 2021
dc.date.none.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151917
Salierno, Gabriel Leonardo; Gradizek, Anton; Maestri, Mauricio Leonardo; Picabea, Julia Valentina; Cassanello, Miryan; et al.; Comparison of the fluidized state stability from radioactive particle tracking results; Molecular Diversity Preservation International; ChemEngineering; 5; 4; 10-2021; 1-12
2305-7084
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151917
identifier_str_mv Salierno, Gabriel Leonardo; Gradizek, Anton; Maestri, Mauricio Leonardo; Picabea, Julia Valentina; Cassanello, Miryan; et al.; Comparison of the fluidized state stability from radioactive particle tracking results; Molecular Diversity Preservation International; ChemEngineering; 5; 4; 10-2021; 1-12
2305-7084
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2305-7084/5/4/65
info:eu-repo/semantics/altIdentifier/doi/10.3390/chemengineering5040065
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613617229496320
score 13.070432