Pure Variable Inclusion Logics

Autores
Paoli, Francesco; Pra Baldi, Michele; Szmuc, Damián Enrique
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this article is to discuss pure variable inclusion logics, that is, logical systems where valid entailments require that the propositional variables occurring in the conclusion are included among those appearing in the premises, or vice versa. We study the subsystems of Classical Logic satisfying these requirements and assess the extent to which it is possible to characterise them by means of a single logical matrix. In addition, we semantically describe both of these companions to Classical Logic in terms of appropriate matrix bundles and as semilattice-based logics, showing that the notion of consequence in these logics can be interpreted in terms of truth (or non-falsity) and meaningfulness (or meaninglessness) preservation. Finally, we use Płonka sums of matrices to investigate the pure variable inclusion companions of an arbitrary finitary logic.
Fil: Paoli, Francesco. Università Degli Studi Di Cagliari.; Italia
Fil: Pra Baldi, Michele. Università Degli Studi Di Cagliari.; Italia
Fil: Szmuc, Damián Enrique. Universidad de Buenos Aires. Facultad de Filosofía y Letras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina
Materia
LOGICS OF VARIABLE INCLUSION
SIGNIFICANCE LOGICS
ANALYTIC ENTAILMENT
WEAK KLEENE LOGICS
Płonka sums
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170880

id CONICETDig_8c371fc8773870ffe95141d2dcca2855
oai_identifier_str oai:ri.conicet.gov.ar:11336/170880
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pure Variable Inclusion LogicsPaoli, FrancescoPra Baldi, MicheleSzmuc, Damián EnriqueLOGICS OF VARIABLE INCLUSIONSIGNIFICANCE LOGICSANALYTIC ENTAILMENTWEAK KLEENE LOGICSPłonka sumshttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6The aim of this article is to discuss pure variable inclusion logics, that is, logical systems where valid entailments require that the propositional variables occurring in the conclusion are included among those appearing in the premises, or vice versa. We study the subsystems of Classical Logic satisfying these requirements and assess the extent to which it is possible to characterise them by means of a single logical matrix. In addition, we semantically describe both of these companions to Classical Logic in terms of appropriate matrix bundles and as semilattice-based logics, showing that the notion of consequence in these logics can be interpreted in terms of truth (or non-falsity) and meaningfulness (or meaninglessness) preservation. Finally, we use Płonka sums of matrices to investigate the pure variable inclusion companions of an arbitrary finitary logic.Fil: Paoli, Francesco. Università Degli Studi Di Cagliari.; ItaliaFil: Pra Baldi, Michele. Università Degli Studi Di Cagliari.; ItaliaFil: Szmuc, Damián Enrique. Universidad de Buenos Aires. Facultad de Filosofía y Letras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; ArgentinaUniwersytet Mikołaja Kopernika2021-11-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170880Paoli, Francesco; Pra Baldi, Michele; Szmuc, Damián Enrique; Pure Variable Inclusion Logics; Uniwersytet Mikołaja Kopernika; Logic And Logical Philosophy; 30; 4; 28-11-2021; 631-6521425-3305CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://apcz.umk.pl/LLP/article/view/36176info:eu-repo/semantics/altIdentifier/doi/10.12775/LLP.2021.015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:17:15Zoai:ri.conicet.gov.ar:11336/170880instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:17:15.934CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pure Variable Inclusion Logics
title Pure Variable Inclusion Logics
spellingShingle Pure Variable Inclusion Logics
Paoli, Francesco
LOGICS OF VARIABLE INCLUSION
SIGNIFICANCE LOGICS
ANALYTIC ENTAILMENT
WEAK KLEENE LOGICS
Płonka sums
title_short Pure Variable Inclusion Logics
title_full Pure Variable Inclusion Logics
title_fullStr Pure Variable Inclusion Logics
title_full_unstemmed Pure Variable Inclusion Logics
title_sort Pure Variable Inclusion Logics
dc.creator.none.fl_str_mv Paoli, Francesco
Pra Baldi, Michele
Szmuc, Damián Enrique
author Paoli, Francesco
author_facet Paoli, Francesco
Pra Baldi, Michele
Szmuc, Damián Enrique
author_role author
author2 Pra Baldi, Michele
Szmuc, Damián Enrique
author2_role author
author
dc.subject.none.fl_str_mv LOGICS OF VARIABLE INCLUSION
SIGNIFICANCE LOGICS
ANALYTIC ENTAILMENT
WEAK KLEENE LOGICS
Płonka sums
topic LOGICS OF VARIABLE INCLUSION
SIGNIFICANCE LOGICS
ANALYTIC ENTAILMENT
WEAK KLEENE LOGICS
Płonka sums
purl_subject.fl_str_mv https://purl.org/becyt/ford/6.3
https://purl.org/becyt/ford/6
dc.description.none.fl_txt_mv The aim of this article is to discuss pure variable inclusion logics, that is, logical systems where valid entailments require that the propositional variables occurring in the conclusion are included among those appearing in the premises, or vice versa. We study the subsystems of Classical Logic satisfying these requirements and assess the extent to which it is possible to characterise them by means of a single logical matrix. In addition, we semantically describe both of these companions to Classical Logic in terms of appropriate matrix bundles and as semilattice-based logics, showing that the notion of consequence in these logics can be interpreted in terms of truth (or non-falsity) and meaningfulness (or meaninglessness) preservation. Finally, we use Płonka sums of matrices to investigate the pure variable inclusion companions of an arbitrary finitary logic.
Fil: Paoli, Francesco. Università Degli Studi Di Cagliari.; Italia
Fil: Pra Baldi, Michele. Università Degli Studi Di Cagliari.; Italia
Fil: Szmuc, Damián Enrique. Universidad de Buenos Aires. Facultad de Filosofía y Letras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina
description The aim of this article is to discuss pure variable inclusion logics, that is, logical systems where valid entailments require that the propositional variables occurring in the conclusion are included among those appearing in the premises, or vice versa. We study the subsystems of Classical Logic satisfying these requirements and assess the extent to which it is possible to characterise them by means of a single logical matrix. In addition, we semantically describe both of these companions to Classical Logic in terms of appropriate matrix bundles and as semilattice-based logics, showing that the notion of consequence in these logics can be interpreted in terms of truth (or non-falsity) and meaningfulness (or meaninglessness) preservation. Finally, we use Płonka sums of matrices to investigate the pure variable inclusion companions of an arbitrary finitary logic.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170880
Paoli, Francesco; Pra Baldi, Michele; Szmuc, Damián Enrique; Pure Variable Inclusion Logics; Uniwersytet Mikołaja Kopernika; Logic And Logical Philosophy; 30; 4; 28-11-2021; 631-652
1425-3305
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170880
identifier_str_mv Paoli, Francesco; Pra Baldi, Michele; Szmuc, Damián Enrique; Pure Variable Inclusion Logics; Uniwersytet Mikołaja Kopernika; Logic And Logical Philosophy; 30; 4; 28-11-2021; 631-652
1425-3305
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://apcz.umk.pl/LLP/article/view/36176
info:eu-repo/semantics/altIdentifier/doi/10.12775/LLP.2021.015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Uniwersytet Mikołaja Kopernika
publisher.none.fl_str_mv Uniwersytet Mikołaja Kopernika
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606514805243904
score 13.000565