Geometric inequivalence of metric and Palatini formulations of General Relativity
- Autores
- Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.
Fil: Bejarano, Cecilia Soledad. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Delhom, Adria. Universidad de Valencia; España
Fil: Jiménez Cano, Alejandro. Universidad de Granada; España
Fil: Olmo, Gonzalo J.. Universidad de Valencia; España. Universidade Federal da Paraiba; Brasil
Fil: Rubiera Garcia, Diego. Universidad Complutense de Madrid; España - Materia
-
Geometric inequivalence
General Relativity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154412
Ver los metadatos del registro completo
id |
CONICETDig_8c314146a7eb49a1e5d4b83c586f35b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154412 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geometric inequivalence of metric and Palatini formulations of General RelativityBejarano, Cecilia SoledadDelhom, AdriaJiménez Cano, AlejandroOlmo, Gonzalo J.Rubiera Garcia, DiegoGeometric inequivalenceGeneral Relativityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.Fil: Bejarano, Cecilia Soledad. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Delhom, Adria. Universidad de Valencia; EspañaFil: Jiménez Cano, Alejandro. Universidad de Granada; EspañaFil: Olmo, Gonzalo J.. Universidad de Valencia; España. Universidade Federal da Paraiba; BrasilFil: Rubiera Garcia, Diego. Universidad Complutense de Madrid; EspañaElsevier Science2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154412Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego; Geometric inequivalence of metric and Palatini formulations of General Relativity; Elsevier Science; Physics Letters B; 802; 135275; 3-2020; 1-40370-2693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2020.135275info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0370269320300794info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:03Zoai:ri.conicet.gov.ar:11336/154412instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:03.447CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geometric inequivalence of metric and Palatini formulations of General Relativity |
title |
Geometric inequivalence of metric and Palatini formulations of General Relativity |
spellingShingle |
Geometric inequivalence of metric and Palatini formulations of General Relativity Bejarano, Cecilia Soledad Geometric inequivalence General Relativity |
title_short |
Geometric inequivalence of metric and Palatini formulations of General Relativity |
title_full |
Geometric inequivalence of metric and Palatini formulations of General Relativity |
title_fullStr |
Geometric inequivalence of metric and Palatini formulations of General Relativity |
title_full_unstemmed |
Geometric inequivalence of metric and Palatini formulations of General Relativity |
title_sort |
Geometric inequivalence of metric and Palatini formulations of General Relativity |
dc.creator.none.fl_str_mv |
Bejarano, Cecilia Soledad Delhom, Adria Jiménez Cano, Alejandro Olmo, Gonzalo J. Rubiera Garcia, Diego |
author |
Bejarano, Cecilia Soledad |
author_facet |
Bejarano, Cecilia Soledad Delhom, Adria Jiménez Cano, Alejandro Olmo, Gonzalo J. Rubiera Garcia, Diego |
author_role |
author |
author2 |
Delhom, Adria Jiménez Cano, Alejandro Olmo, Gonzalo J. Rubiera Garcia, Diego |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Geometric inequivalence General Relativity |
topic |
Geometric inequivalence General Relativity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection. Fil: Bejarano, Cecilia Soledad. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Delhom, Adria. Universidad de Valencia; España Fil: Jiménez Cano, Alejandro. Universidad de Granada; España Fil: Olmo, Gonzalo J.. Universidad de Valencia; España. Universidade Federal da Paraiba; Brasil Fil: Rubiera Garcia, Diego. Universidad Complutense de Madrid; España |
description |
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154412 Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego; Geometric inequivalence of metric and Palatini formulations of General Relativity; Elsevier Science; Physics Letters B; 802; 135275; 3-2020; 1-4 0370-2693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154412 |
identifier_str_mv |
Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego; Geometric inequivalence of metric and Palatini formulations of General Relativity; Elsevier Science; Physics Letters B; 802; 135275; 3-2020; 1-4 0370-2693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2020.135275 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0370269320300794 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614101321383936 |
score |
13.069144 |