Geometric inequivalence of metric and Palatini formulations of General Relativity

Autores
Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.
Fil: Bejarano, Cecilia Soledad. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Delhom, Adria. Universidad de Valencia; España
Fil: Jiménez Cano, Alejandro. Universidad de Granada; España
Fil: Olmo, Gonzalo J.. Universidad de Valencia; España. Universidade Federal da Paraiba; Brasil
Fil: Rubiera Garcia, Diego. Universidad Complutense de Madrid; España
Materia
Geometric inequivalence
General Relativity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/154412

id CONICETDig_8c314146a7eb49a1e5d4b83c586f35b3
oai_identifier_str oai:ri.conicet.gov.ar:11336/154412
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Geometric inequivalence of metric and Palatini formulations of General RelativityBejarano, Cecilia SoledadDelhom, AdriaJiménez Cano, AlejandroOlmo, Gonzalo J.Rubiera Garcia, DiegoGeometric inequivalenceGeneral Relativityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.Fil: Bejarano, Cecilia Soledad. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Delhom, Adria. Universidad de Valencia; EspañaFil: Jiménez Cano, Alejandro. Universidad de Granada; EspañaFil: Olmo, Gonzalo J.. Universidad de Valencia; España. Universidade Federal da Paraiba; BrasilFil: Rubiera Garcia, Diego. Universidad Complutense de Madrid; EspañaElsevier Science2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154412Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego; Geometric inequivalence of metric and Palatini formulations of General Relativity; Elsevier Science; Physics Letters B; 802; 135275; 3-2020; 1-40370-2693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2020.135275info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0370269320300794info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:03Zoai:ri.conicet.gov.ar:11336/154412instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:03.447CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Geometric inequivalence of metric and Palatini formulations of General Relativity
title Geometric inequivalence of metric and Palatini formulations of General Relativity
spellingShingle Geometric inequivalence of metric and Palatini formulations of General Relativity
Bejarano, Cecilia Soledad
Geometric inequivalence
General Relativity
title_short Geometric inequivalence of metric and Palatini formulations of General Relativity
title_full Geometric inequivalence of metric and Palatini formulations of General Relativity
title_fullStr Geometric inequivalence of metric and Palatini formulations of General Relativity
title_full_unstemmed Geometric inequivalence of metric and Palatini formulations of General Relativity
title_sort Geometric inequivalence of metric and Palatini formulations of General Relativity
dc.creator.none.fl_str_mv Bejarano, Cecilia Soledad
Delhom, Adria
Jiménez Cano, Alejandro
Olmo, Gonzalo J.
Rubiera Garcia, Diego
author Bejarano, Cecilia Soledad
author_facet Bejarano, Cecilia Soledad
Delhom, Adria
Jiménez Cano, Alejandro
Olmo, Gonzalo J.
Rubiera Garcia, Diego
author_role author
author2 Delhom, Adria
Jiménez Cano, Alejandro
Olmo, Gonzalo J.
Rubiera Garcia, Diego
author2_role author
author
author
author
dc.subject.none.fl_str_mv Geometric inequivalence
General Relativity
topic Geometric inequivalence
General Relativity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.
Fil: Bejarano, Cecilia Soledad. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Delhom, Adria. Universidad de Valencia; España
Fil: Jiménez Cano, Alejandro. Universidad de Granada; España
Fil: Olmo, Gonzalo J.. Universidad de Valencia; España. Universidade Federal da Paraiba; Brasil
Fil: Rubiera Garcia, Diego. Universidad Complutense de Madrid; España
description Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/154412
Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego; Geometric inequivalence of metric and Palatini formulations of General Relativity; Elsevier Science; Physics Letters B; 802; 135275; 3-2020; 1-4
0370-2693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/154412
identifier_str_mv Bejarano, Cecilia Soledad; Delhom, Adria; Jiménez Cano, Alejandro; Olmo, Gonzalo J.; Rubiera Garcia, Diego; Geometric inequivalence of metric and Palatini formulations of General Relativity; Elsevier Science; Physics Letters B; 802; 135275; 3-2020; 1-4
0370-2693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2020.135275
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0370269320300794
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614101321383936
score 13.069144