Contraction of a shear-thinning axisymmetric cavity

Autores
Lu, Jiakai; Ferri, Michele; Ubal, Sebastian; Campanella, Osvaldo; Corvalan, Carlos
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity's moving front. Scaling arguments are used to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the food industry, and the fabrication of nanopore based biosensors.
Fil: Lu, Jiakai. University of Massachussets; Estados Unidos
Fil: Ferri, Michele. Università di Parma; Italia
Fil: Ubal, Sebastian. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
Fil: Campanella, Osvaldo. Ohio State University; Estados Unidos
Fil: Corvalan, Carlos. Purdue University; Estados Unidos
Materia
INTERFACIAL FLOWS
NON-NEWTONIAN FLUIDS
BUBBLES
FINITE ELEMENTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/142915

id CONICETDig_8be5f3909aa2e6bfd768de071aba0c7a
oai_identifier_str oai:ri.conicet.gov.ar:11336/142915
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Contraction of a shear-thinning axisymmetric cavityLu, JiakaiFerri, MicheleUbal, SebastianCampanella, OsvaldoCorvalan, CarlosINTERFACIAL FLOWSNON-NEWTONIAN FLUIDSBUBBLESFINITE ELEMENTShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity's moving front. Scaling arguments are used to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the food industry, and the fabrication of nanopore based biosensors.Fil: Lu, Jiakai. University of Massachussets; Estados UnidosFil: Ferri, Michele. Università di Parma; ItaliaFil: Ubal, Sebastian. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Campanella, Osvaldo. Ohio State University; Estados UnidosFil: Corvalan, Carlos. Purdue University; Estados UnidosAmerican Institute of Physics2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142915Lu, Jiakai; Ferri, Michele; Ubal, Sebastian; Campanella, Osvaldo; Corvalan, Carlos; Contraction of a shear-thinning axisymmetric cavity; American Institute of Physics; Physics of Fluids; 31; 12; 12-2019; 1-71070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5126475info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5126475info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:07Zoai:ri.conicet.gov.ar:11336/142915instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:08.082CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Contraction of a shear-thinning axisymmetric cavity
title Contraction of a shear-thinning axisymmetric cavity
spellingShingle Contraction of a shear-thinning axisymmetric cavity
Lu, Jiakai
INTERFACIAL FLOWS
NON-NEWTONIAN FLUIDS
BUBBLES
FINITE ELEMENTS
title_short Contraction of a shear-thinning axisymmetric cavity
title_full Contraction of a shear-thinning axisymmetric cavity
title_fullStr Contraction of a shear-thinning axisymmetric cavity
title_full_unstemmed Contraction of a shear-thinning axisymmetric cavity
title_sort Contraction of a shear-thinning axisymmetric cavity
dc.creator.none.fl_str_mv Lu, Jiakai
Ferri, Michele
Ubal, Sebastian
Campanella, Osvaldo
Corvalan, Carlos
author Lu, Jiakai
author_facet Lu, Jiakai
Ferri, Michele
Ubal, Sebastian
Campanella, Osvaldo
Corvalan, Carlos
author_role author
author2 Ferri, Michele
Ubal, Sebastian
Campanella, Osvaldo
Corvalan, Carlos
author2_role author
author
author
author
dc.subject.none.fl_str_mv INTERFACIAL FLOWS
NON-NEWTONIAN FLUIDS
BUBBLES
FINITE ELEMENTS
topic INTERFACIAL FLOWS
NON-NEWTONIAN FLUIDS
BUBBLES
FINITE ELEMENTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity's moving front. Scaling arguments are used to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the food industry, and the fabrication of nanopore based biosensors.
Fil: Lu, Jiakai. University of Massachussets; Estados Unidos
Fil: Ferri, Michele. Università di Parma; Italia
Fil: Ubal, Sebastian. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
Fil: Campanella, Osvaldo. Ohio State University; Estados Unidos
Fil: Corvalan, Carlos. Purdue University; Estados Unidos
description We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity's moving front. Scaling arguments are used to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the food industry, and the fabrication of nanopore based biosensors.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/142915
Lu, Jiakai; Ferri, Michele; Ubal, Sebastian; Campanella, Osvaldo; Corvalan, Carlos; Contraction of a shear-thinning axisymmetric cavity; American Institute of Physics; Physics of Fluids; 31; 12; 12-2019; 1-7
1070-6631
CONICET Digital
CONICET
url http://hdl.handle.net/11336/142915
identifier_str_mv Lu, Jiakai; Ferri, Michele; Ubal, Sebastian; Campanella, Osvaldo; Corvalan, Carlos; Contraction of a shear-thinning axisymmetric cavity; American Institute of Physics; Physics of Fluids; 31; 12; 12-2019; 1-7
1070-6631
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5126475
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5126475
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781817139494912
score 12.982451