Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s

Autores
Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.
Fil: Bergero, Paula Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Schaposnik, Laura P.. University of Illinois; Estados Unidos
Fil: Wang, Grace. Massachusetts Institute of Technology; Estados Unidos
Materia
COVID-19
DENGUE
NEURAL NETWORK
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/227050

id CONICETDig_8bb2186e2dfb77c8b38c731f5b7bfdfb
oai_identifier_str oai:ri.conicet.gov.ar:11336/227050
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020sBergero, Paula ElenaSchaposnik, Laura P.Wang, GraceCOVID-19DENGUENEURAL NETWORKhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.Fil: Bergero, Paula Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Schaposnik, Laura P.. University of Illinois; Estados UnidosFil: Wang, Grace. Massachusetts Institute of Technology; Estados UnidosNature Publishing Group2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227050Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace; Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s; Nature Publishing Group; Scientific Reports; 13; 1; 2-2023; 1-172045-23222331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-27983-9info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-27983-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:21Zoai:ri.conicet.gov.ar:11336/227050instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:21.619CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
title Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
spellingShingle Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
Bergero, Paula Elena
COVID-19
DENGUE
NEURAL NETWORK
title_short Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
title_full Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
title_fullStr Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
title_full_unstemmed Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
title_sort Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
dc.creator.none.fl_str_mv Bergero, Paula Elena
Schaposnik, Laura P.
Wang, Grace
author Bergero, Paula Elena
author_facet Bergero, Paula Elena
Schaposnik, Laura P.
Wang, Grace
author_role author
author2 Schaposnik, Laura P.
Wang, Grace
author2_role author
author
dc.subject.none.fl_str_mv COVID-19
DENGUE
NEURAL NETWORK
topic COVID-19
DENGUE
NEURAL NETWORK
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.
Fil: Bergero, Paula Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Schaposnik, Laura P.. University of Illinois; Estados Unidos
Fil: Wang, Grace. Massachusetts Institute of Technology; Estados Unidos
description A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/227050
Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace; Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s; Nature Publishing Group; Scientific Reports; 13; 1; 2-2023; 1-17
2045-2322
2331-8422
CONICET Digital
CONICET
url http://hdl.handle.net/11336/227050
identifier_str_mv Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace; Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s; Nature Publishing Group; Scientific Reports; 13; 1; 2-2023; 1-17
2045-2322
2331-8422
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-27983-9
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-27983-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269798100107264
score 12.885934