Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s
- Autores
- Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.
Fil: Bergero, Paula Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Schaposnik, Laura P.. University of Illinois; Estados Unidos
Fil: Wang, Grace. Massachusetts Institute of Technology; Estados Unidos - Materia
-
COVID-19
DENGUE
NEURAL NETWORK - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227050
Ver los metadatos del registro completo
id |
CONICETDig_8bb2186e2dfb77c8b38c731f5b7bfdfb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227050 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020sBergero, Paula ElenaSchaposnik, Laura P.Wang, GraceCOVID-19DENGUENEURAL NETWORKhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.Fil: Bergero, Paula Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Schaposnik, Laura P.. University of Illinois; Estados UnidosFil: Wang, Grace. Massachusetts Institute of Technology; Estados UnidosNature Publishing Group2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227050Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace; Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s; Nature Publishing Group; Scientific Reports; 13; 1; 2-2023; 1-172045-23222331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-27983-9info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-27983-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:21Zoai:ri.conicet.gov.ar:11336/227050instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:21.619CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s |
title |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s |
spellingShingle |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s Bergero, Paula Elena COVID-19 DENGUE NEURAL NETWORK |
title_short |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s |
title_full |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s |
title_fullStr |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s |
title_full_unstemmed |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s |
title_sort |
Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s |
dc.creator.none.fl_str_mv |
Bergero, Paula Elena Schaposnik, Laura P. Wang, Grace |
author |
Bergero, Paula Elena |
author_facet |
Bergero, Paula Elena Schaposnik, Laura P. Wang, Grace |
author_role |
author |
author2 |
Schaposnik, Laura P. Wang, Grace |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COVID-19 DENGUE NEURAL NETWORK |
topic |
COVID-19 DENGUE NEURAL NETWORK |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data. Fil: Bergero, Paula Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Schaposnik, Laura P.. University of Illinois; Estados Unidos Fil: Wang, Grace. Massachusetts Institute of Technology; Estados Unidos |
description |
A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227050 Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace; Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s; Nature Publishing Group; Scientific Reports; 13; 1; 2-2023; 1-17 2045-2322 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/227050 |
identifier_str_mv |
Bergero, Paula Elena; Schaposnik, Laura P.; Wang, Grace; Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s; Nature Publishing Group; Scientific Reports; 13; 1; 2-2023; 1-17 2045-2322 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-27983-9 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-27983-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269798100107264 |
score |
12.885934 |