Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes

Autores
Benavente Llorente, Victoria; Jenewein, Ken J.; Bierling, Markus; Körner, Andreas; Hutzler, Andreas; Kormányos, Attila; Cherevko, Serhiy
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Photoelectrochemical (PEC) water splitting is a promising energy conversion technology based on the harvesting of sunlight to produce green hydrogen. One of the major challenges hindering the development of PEC devices is the stability of photoanodes since most semiconductors are susceptible to anodic decomposition in aqueous solutions. While hematite (α-Fe2O3) has been regarded as one of the most stable metal oxides to drive the oxygen evolution reaction in alkaline media, its photostability in a broad pH range is poorly investigated. In this work, we study the dissolution of model Fe2O3 thin films in different electrolytes, including unbuffered and buffered neutral, near-neutral, and alkaline solutions, using on-line PEC inductively coupled plasma mass spectrometry. Fe leaching is observed in all studied unbuffered electrolytes under irradiation while phosphate-buffered electrolytes reveal a dramatic stability enhancement at all pHs. The latter might imply that phosphate buffers either alleviate local acidification in the close vicinity of the electrode-electrolyte interface during the reaction or that specific adsorption of phosphate anions at the α-Fe2O3 surface could mitigate dissolution. Furthermore, we explore the long-term stability of α-Fe2O3 using a three-electrode bulk PEC cell. In the long run, phosphate buffers do not represent an optimal electrolyte choice either, as the surface Fe oxide gradually converts to Fe phosphates that are not photoelectrochemically active. Our work demonstrates that photocorrosion of Fe2O3 within electrolytes that are commonly used in the literature is not negligible and should be considered for designing stable semiconductor interfaces.
Fil: Benavente Llorente, Victoria. Helmholtz Institute Erlangen-nürnberg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Jenewein, Ken J.. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; Alemania
Fil: Bierling, Markus. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; Alemania
Fil: Körner, Andreas. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; Alemania
Fil: Hutzler, Andreas. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; Alemania
Fil: Kormányos, Attila. University Of Szeged; Hungría
Fil: Cherevko, Serhiy. Helmholtz Institute Erlangen-nürnberg; Alemania
Materia
Photoelectrochemistry
Scanning flow cell
Hematite
Photocorrosion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/226719

id CONICETDig_8b7351a613a7a4ff72263b24f94c6d17
oai_identifier_str oai:ri.conicet.gov.ar:11336/226719
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Photocorrosion of Hematite Photoanodes in Neutral and Alkaline ElectrolytesBenavente Llorente, VictoriaJenewein, Ken J.Bierling, MarkusKörner, AndreasHutzler, AndreasKormányos, AttilaCherevko, SerhiyPhotoelectrochemistryScanning flow cellHematitePhotocorrosionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Photoelectrochemical (PEC) water splitting is a promising energy conversion technology based on the harvesting of sunlight to produce green hydrogen. One of the major challenges hindering the development of PEC devices is the stability of photoanodes since most semiconductors are susceptible to anodic decomposition in aqueous solutions. While hematite (α-Fe2O3) has been regarded as one of the most stable metal oxides to drive the oxygen evolution reaction in alkaline media, its photostability in a broad pH range is poorly investigated. In this work, we study the dissolution of model Fe2O3 thin films in different electrolytes, including unbuffered and buffered neutral, near-neutral, and alkaline solutions, using on-line PEC inductively coupled plasma mass spectrometry. Fe leaching is observed in all studied unbuffered electrolytes under irradiation while phosphate-buffered electrolytes reveal a dramatic stability enhancement at all pHs. The latter might imply that phosphate buffers either alleviate local acidification in the close vicinity of the electrode-electrolyte interface during the reaction or that specific adsorption of phosphate anions at the α-Fe2O3 surface could mitigate dissolution. Furthermore, we explore the long-term stability of α-Fe2O3 using a three-electrode bulk PEC cell. In the long run, phosphate buffers do not represent an optimal electrolyte choice either, as the surface Fe oxide gradually converts to Fe phosphates that are not photoelectrochemically active. Our work demonstrates that photocorrosion of Fe2O3 within electrolytes that are commonly used in the literature is not negligible and should be considered for designing stable semiconductor interfaces.Fil: Benavente Llorente, Victoria. Helmholtz Institute Erlangen-nürnberg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Jenewein, Ken J.. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; AlemaniaFil: Bierling, Markus. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; AlemaniaFil: Körner, Andreas. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; AlemaniaFil: Hutzler, Andreas. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; AlemaniaFil: Kormányos, Attila. University Of Szeged; HungríaFil: Cherevko, Serhiy. Helmholtz Institute Erlangen-nürnberg; AlemaniaAmerican Chemical Society2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226719Benavente Llorente, Victoria; Jenewein, Ken J.; Bierling, Markus; Körner, Andreas; Hutzler, Andreas; et al.; Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes; American Chemical Society; Journal of Physical Chemistry C; 127; 39; 10-2023; 19687-196971932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.3c02969info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.3c02969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:09Zoai:ri.conicet.gov.ar:11336/226719instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:10.141CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes
title Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes
spellingShingle Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes
Benavente Llorente, Victoria
Photoelectrochemistry
Scanning flow cell
Hematite
Photocorrosion
title_short Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes
title_full Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes
title_fullStr Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes
title_full_unstemmed Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes
title_sort Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes
dc.creator.none.fl_str_mv Benavente Llorente, Victoria
Jenewein, Ken J.
Bierling, Markus
Körner, Andreas
Hutzler, Andreas
Kormányos, Attila
Cherevko, Serhiy
author Benavente Llorente, Victoria
author_facet Benavente Llorente, Victoria
Jenewein, Ken J.
Bierling, Markus
Körner, Andreas
Hutzler, Andreas
Kormányos, Attila
Cherevko, Serhiy
author_role author
author2 Jenewein, Ken J.
Bierling, Markus
Körner, Andreas
Hutzler, Andreas
Kormányos, Attila
Cherevko, Serhiy
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Photoelectrochemistry
Scanning flow cell
Hematite
Photocorrosion
topic Photoelectrochemistry
Scanning flow cell
Hematite
Photocorrosion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Photoelectrochemical (PEC) water splitting is a promising energy conversion technology based on the harvesting of sunlight to produce green hydrogen. One of the major challenges hindering the development of PEC devices is the stability of photoanodes since most semiconductors are susceptible to anodic decomposition in aqueous solutions. While hematite (α-Fe2O3) has been regarded as one of the most stable metal oxides to drive the oxygen evolution reaction in alkaline media, its photostability in a broad pH range is poorly investigated. In this work, we study the dissolution of model Fe2O3 thin films in different electrolytes, including unbuffered and buffered neutral, near-neutral, and alkaline solutions, using on-line PEC inductively coupled plasma mass spectrometry. Fe leaching is observed in all studied unbuffered electrolytes under irradiation while phosphate-buffered electrolytes reveal a dramatic stability enhancement at all pHs. The latter might imply that phosphate buffers either alleviate local acidification in the close vicinity of the electrode-electrolyte interface during the reaction or that specific adsorption of phosphate anions at the α-Fe2O3 surface could mitigate dissolution. Furthermore, we explore the long-term stability of α-Fe2O3 using a three-electrode bulk PEC cell. In the long run, phosphate buffers do not represent an optimal electrolyte choice either, as the surface Fe oxide gradually converts to Fe phosphates that are not photoelectrochemically active. Our work demonstrates that photocorrosion of Fe2O3 within electrolytes that are commonly used in the literature is not negligible and should be considered for designing stable semiconductor interfaces.
Fil: Benavente Llorente, Victoria. Helmholtz Institute Erlangen-nürnberg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Jenewein, Ken J.. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; Alemania
Fil: Bierling, Markus. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; Alemania
Fil: Körner, Andreas. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; Alemania
Fil: Hutzler, Andreas. Helmholtz Institute Erlangen-nürnberg; Alemania. Universitat Erlangen Nuremberg; Alemania
Fil: Kormányos, Attila. University Of Szeged; Hungría
Fil: Cherevko, Serhiy. Helmholtz Institute Erlangen-nürnberg; Alemania
description Photoelectrochemical (PEC) water splitting is a promising energy conversion technology based on the harvesting of sunlight to produce green hydrogen. One of the major challenges hindering the development of PEC devices is the stability of photoanodes since most semiconductors are susceptible to anodic decomposition in aqueous solutions. While hematite (α-Fe2O3) has been regarded as one of the most stable metal oxides to drive the oxygen evolution reaction in alkaline media, its photostability in a broad pH range is poorly investigated. In this work, we study the dissolution of model Fe2O3 thin films in different electrolytes, including unbuffered and buffered neutral, near-neutral, and alkaline solutions, using on-line PEC inductively coupled plasma mass spectrometry. Fe leaching is observed in all studied unbuffered electrolytes under irradiation while phosphate-buffered electrolytes reveal a dramatic stability enhancement at all pHs. The latter might imply that phosphate buffers either alleviate local acidification in the close vicinity of the electrode-electrolyte interface during the reaction or that specific adsorption of phosphate anions at the α-Fe2O3 surface could mitigate dissolution. Furthermore, we explore the long-term stability of α-Fe2O3 using a three-electrode bulk PEC cell. In the long run, phosphate buffers do not represent an optimal electrolyte choice either, as the surface Fe oxide gradually converts to Fe phosphates that are not photoelectrochemically active. Our work demonstrates that photocorrosion of Fe2O3 within electrolytes that are commonly used in the literature is not negligible and should be considered for designing stable semiconductor interfaces.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/226719
Benavente Llorente, Victoria; Jenewein, Ken J.; Bierling, Markus; Körner, Andreas; Hutzler, Andreas; et al.; Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes; American Chemical Society; Journal of Physical Chemistry C; 127; 39; 10-2023; 19687-19697
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/226719
identifier_str_mv Benavente Llorente, Victoria; Jenewein, Ken J.; Bierling, Markus; Körner, Andreas; Hutzler, Andreas; et al.; Photocorrosion of Hematite Photoanodes in Neutral and Alkaline Electrolytes; American Chemical Society; Journal of Physical Chemistry C; 127; 39; 10-2023; 19687-19697
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.3c02969
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.3c02969
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614249835397120
score 13.070432