Difractómetro de grandes componentes para el reactor RA-10
- Autores
- Santisteban, Javier Roberto; Sanchez, F.; Moreira, F.; Gomez, S.; Tartaglione, Aureliano; Malamud, Florencia; Vicente Alvarez, Miguel Angel; Gimenez, M.; Vizcaino, Pablo
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- En CNEA se encuentra en ejecución el ?Proyecto RA-10? para la construcción de un reactor multipropósito. Entre los objetivos principales del RA-10 está la provisión de haces de neutrones para la realización de experimentos dentro de un amplio espectro de disciplinas científicas y tecnológicas. Por sus múltiples aplicaciones, la difracción de neutrones es una de las técnicas neutrónicas más populares. El gran poder de penetración de los neutrones (del orden de cm) permite investigar el interior de un objeto sin necesidad de cortarlo. Así es posible estudiar en forma no-destructiva objetos macroscópicos y cuantificar la variación espacial de las fases cristalinas que lo componen, las orientaciones de esos cristalitos, y su nivel de deformación plástica y elástica.En particular, es posible determinar las tensiones internas en componentes mecánicos de gran porte, un tema de gran importancia dentro de la industria metal-mecánica. En este caso los planos cristalinos son utilizados como extensómetros microscópicos, y las pequeñas variaciones que existen en las distancias interplanares para las distintas direcciones de un objeto son utilizados para cuantificar el tensor completo de deformación elástica.La posibilidad de realizar experimentos de difracción sobre objetos intactos ha despertado también gran interés dentro de la comunidad dedicada al estudio y la conservación del patrimonio cultural.Presentamos aquí el diseño básico de un difractómetro para el estudio de grandes componentes, para ser instalado en un haz térmico de la sala del reactor RA-10, es decir, directamente contra la pared del mismo.Se propone equiparlo con dos monocromadores diferentes, para poder optar entre mayor intensidad o mayor resolución. Los monocromadores propuestos son doblemente curvados, a fin de enfocar el haz sobre la posición de medición y optimizar la resolución del equipo para la reflexión de mayor interés. Un componente central del instrumento es el portamuestras, consistente en una mesa con capacidad de posicionar componentes de hasta ~300kg de peso con una precisión de ~20um, una resolución espacial de ~1mm, y rotar los mismos a fin de explorar distintas direcciones. Presentaremos además avances realizados sobre un prototipo a menor escala, que comparte algunas características del diseño propuesto, que será instalado en el reactor RA-6 del Centro Atómico Bariloche.
Fil: Santisteban, Javier Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Sanchez, F.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Moreira, F.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Gomez, S.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Tartaglione, Aureliano. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Malamud, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Vicente Alvarez, Miguel Angel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gimenez, M.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Vizcaino, Pablo. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia Ciclo del Combustible Nuclear. Laboratorio D/mat.d/la Fabrica de Aleaciones Especiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
RA-10
difractometro
neutrones
grandes componentes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/36496
Ver los metadatos del registro completo
id |
CONICETDig_8af5caf37f986b76cbccfb998b5d0c7f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/36496 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Difractómetro de grandes componentes para el reactor RA-10Santisteban, Javier RobertoSanchez, F.Moreira, F.Gomez, S.Tartaglione, AurelianoMalamud, FlorenciaVicente Alvarez, Miguel AngelGimenez, M.Vizcaino, PabloRA-10difractometroneutronesgrandes componenteshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1En CNEA se encuentra en ejecución el ?Proyecto RA-10? para la construcción de un reactor multipropósito. Entre los objetivos principales del RA-10 está la provisión de haces de neutrones para la realización de experimentos dentro de un amplio espectro de disciplinas científicas y tecnológicas. Por sus múltiples aplicaciones, la difracción de neutrones es una de las técnicas neutrónicas más populares. El gran poder de penetración de los neutrones (del orden de cm) permite investigar el interior de un objeto sin necesidad de cortarlo. Así es posible estudiar en forma no-destructiva objetos macroscópicos y cuantificar la variación espacial de las fases cristalinas que lo componen, las orientaciones de esos cristalitos, y su nivel de deformación plástica y elástica.En particular, es posible determinar las tensiones internas en componentes mecánicos de gran porte, un tema de gran importancia dentro de la industria metal-mecánica. En este caso los planos cristalinos son utilizados como extensómetros microscópicos, y las pequeñas variaciones que existen en las distancias interplanares para las distintas direcciones de un objeto son utilizados para cuantificar el tensor completo de deformación elástica.La posibilidad de realizar experimentos de difracción sobre objetos intactos ha despertado también gran interés dentro de la comunidad dedicada al estudio y la conservación del patrimonio cultural.Presentamos aquí el diseño básico de un difractómetro para el estudio de grandes componentes, para ser instalado en un haz térmico de la sala del reactor RA-10, es decir, directamente contra la pared del mismo.Se propone equiparlo con dos monocromadores diferentes, para poder optar entre mayor intensidad o mayor resolución. Los monocromadores propuestos son doblemente curvados, a fin de enfocar el haz sobre la posición de medición y optimizar la resolución del equipo para la reflexión de mayor interés. Un componente central del instrumento es el portamuestras, consistente en una mesa con capacidad de posicionar componentes de hasta ~300kg de peso con una precisión de ~20um, una resolución espacial de ~1mm, y rotar los mismos a fin de explorar distintas direcciones. Presentaremos además avances realizados sobre un prototipo a menor escala, que comparte algunas características del diseño propuesto, que será instalado en el reactor RA-6 del Centro Atómico Bariloche.Fil: Santisteban, Javier Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Sanchez, F.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Moreira, F.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Gomez, S.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Tartaglione, Aureliano. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Malamud, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Vicente Alvarez, Miguel Angel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gimenez, M.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Vizcaino, Pablo. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia Ciclo del Combustible Nuclear. Laboratorio D/mat.d/la Fabrica de Aleaciones Especiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCNEA2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36496Santisteban, Javier Roberto; Sanchez, F.; Moreira, F.; Gomez, S.; Tartaglione, Aureliano; et al.; Difractómetro de grandes componentes para el reactor RA-10; CNEA; Revista de la CNEA; 55; 7-2014; 26-351666-1036CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://www.cnea.gov.ar/es/wp-content/uploads/files/RevistaCNEA-55-56.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:40:46Zoai:ri.conicet.gov.ar:11336/36496instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:40:46.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Difractómetro de grandes componentes para el reactor RA-10 |
title |
Difractómetro de grandes componentes para el reactor RA-10 |
spellingShingle |
Difractómetro de grandes componentes para el reactor RA-10 Santisteban, Javier Roberto RA-10 difractometro neutrones grandes componentes |
title_short |
Difractómetro de grandes componentes para el reactor RA-10 |
title_full |
Difractómetro de grandes componentes para el reactor RA-10 |
title_fullStr |
Difractómetro de grandes componentes para el reactor RA-10 |
title_full_unstemmed |
Difractómetro de grandes componentes para el reactor RA-10 |
title_sort |
Difractómetro de grandes componentes para el reactor RA-10 |
dc.creator.none.fl_str_mv |
Santisteban, Javier Roberto Sanchez, F. Moreira, F. Gomez, S. Tartaglione, Aureliano Malamud, Florencia Vicente Alvarez, Miguel Angel Gimenez, M. Vizcaino, Pablo |
author |
Santisteban, Javier Roberto |
author_facet |
Santisteban, Javier Roberto Sanchez, F. Moreira, F. Gomez, S. Tartaglione, Aureliano Malamud, Florencia Vicente Alvarez, Miguel Angel Gimenez, M. Vizcaino, Pablo |
author_role |
author |
author2 |
Sanchez, F. Moreira, F. Gomez, S. Tartaglione, Aureliano Malamud, Florencia Vicente Alvarez, Miguel Angel Gimenez, M. Vizcaino, Pablo |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
RA-10 difractometro neutrones grandes componentes |
topic |
RA-10 difractometro neutrones grandes componentes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
En CNEA se encuentra en ejecución el ?Proyecto RA-10? para la construcción de un reactor multipropósito. Entre los objetivos principales del RA-10 está la provisión de haces de neutrones para la realización de experimentos dentro de un amplio espectro de disciplinas científicas y tecnológicas. Por sus múltiples aplicaciones, la difracción de neutrones es una de las técnicas neutrónicas más populares. El gran poder de penetración de los neutrones (del orden de cm) permite investigar el interior de un objeto sin necesidad de cortarlo. Así es posible estudiar en forma no-destructiva objetos macroscópicos y cuantificar la variación espacial de las fases cristalinas que lo componen, las orientaciones de esos cristalitos, y su nivel de deformación plástica y elástica.En particular, es posible determinar las tensiones internas en componentes mecánicos de gran porte, un tema de gran importancia dentro de la industria metal-mecánica. En este caso los planos cristalinos son utilizados como extensómetros microscópicos, y las pequeñas variaciones que existen en las distancias interplanares para las distintas direcciones de un objeto son utilizados para cuantificar el tensor completo de deformación elástica.La posibilidad de realizar experimentos de difracción sobre objetos intactos ha despertado también gran interés dentro de la comunidad dedicada al estudio y la conservación del patrimonio cultural.Presentamos aquí el diseño básico de un difractómetro para el estudio de grandes componentes, para ser instalado en un haz térmico de la sala del reactor RA-10, es decir, directamente contra la pared del mismo.Se propone equiparlo con dos monocromadores diferentes, para poder optar entre mayor intensidad o mayor resolución. Los monocromadores propuestos son doblemente curvados, a fin de enfocar el haz sobre la posición de medición y optimizar la resolución del equipo para la reflexión de mayor interés. Un componente central del instrumento es el portamuestras, consistente en una mesa con capacidad de posicionar componentes de hasta ~300kg de peso con una precisión de ~20um, una resolución espacial de ~1mm, y rotar los mismos a fin de explorar distintas direcciones. Presentaremos además avances realizados sobre un prototipo a menor escala, que comparte algunas características del diseño propuesto, que será instalado en el reactor RA-6 del Centro Atómico Bariloche. Fil: Santisteban, Javier Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Sanchez, F.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Moreira, F.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Gomez, S.. Comisión Nacional de Energía Atómica; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Tartaglione, Aureliano. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Malamud, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Vicente Alvarez, Miguel Angel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gimenez, M.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Vizcaino, Pablo. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia Ciclo del Combustible Nuclear. Laboratorio D/mat.d/la Fabrica de Aleaciones Especiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
En CNEA se encuentra en ejecución el ?Proyecto RA-10? para la construcción de un reactor multipropósito. Entre los objetivos principales del RA-10 está la provisión de haces de neutrones para la realización de experimentos dentro de un amplio espectro de disciplinas científicas y tecnológicas. Por sus múltiples aplicaciones, la difracción de neutrones es una de las técnicas neutrónicas más populares. El gran poder de penetración de los neutrones (del orden de cm) permite investigar el interior de un objeto sin necesidad de cortarlo. Así es posible estudiar en forma no-destructiva objetos macroscópicos y cuantificar la variación espacial de las fases cristalinas que lo componen, las orientaciones de esos cristalitos, y su nivel de deformación plástica y elástica.En particular, es posible determinar las tensiones internas en componentes mecánicos de gran porte, un tema de gran importancia dentro de la industria metal-mecánica. En este caso los planos cristalinos son utilizados como extensómetros microscópicos, y las pequeñas variaciones que existen en las distancias interplanares para las distintas direcciones de un objeto son utilizados para cuantificar el tensor completo de deformación elástica.La posibilidad de realizar experimentos de difracción sobre objetos intactos ha despertado también gran interés dentro de la comunidad dedicada al estudio y la conservación del patrimonio cultural.Presentamos aquí el diseño básico de un difractómetro para el estudio de grandes componentes, para ser instalado en un haz térmico de la sala del reactor RA-10, es decir, directamente contra la pared del mismo.Se propone equiparlo con dos monocromadores diferentes, para poder optar entre mayor intensidad o mayor resolución. Los monocromadores propuestos son doblemente curvados, a fin de enfocar el haz sobre la posición de medición y optimizar la resolución del equipo para la reflexión de mayor interés. Un componente central del instrumento es el portamuestras, consistente en una mesa con capacidad de posicionar componentes de hasta ~300kg de peso con una precisión de ~20um, una resolución espacial de ~1mm, y rotar los mismos a fin de explorar distintas direcciones. Presentaremos además avances realizados sobre un prototipo a menor escala, que comparte algunas características del diseño propuesto, que será instalado en el reactor RA-6 del Centro Atómico Bariloche. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/36496 Santisteban, Javier Roberto; Sanchez, F.; Moreira, F.; Gomez, S.; Tartaglione, Aureliano; et al.; Difractómetro de grandes componentes para el reactor RA-10; CNEA; Revista de la CNEA; 55; 7-2014; 26-35 1666-1036 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/36496 |
identifier_str_mv |
Santisteban, Javier Roberto; Sanchez, F.; Moreira, F.; Gomez, S.; Tartaglione, Aureliano; et al.; Difractómetro de grandes componentes para el reactor RA-10; CNEA; Revista de la CNEA; 55; 7-2014; 26-35 1666-1036 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cnea.gov.ar/es/wp-content/uploads/files/RevistaCNEA-55-56.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
CNEA |
publisher.none.fl_str_mv |
CNEA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082900947107840 |
score |
13.22299 |