The genetic architecture of maize (Zea mays L.) kernel weight determination
- Autores
- Alvarez Prado, Santiago; Lopez, Cesar Gabriel; Lynn Senior, M; Borras, Lucas
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P, 0.001) phenotypic variability and medium-to-high heritability (0.6020.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm.
Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina
Fil: Lopez, Cesar Gabriel. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lynn Senior, M. No especifíca;
Fil: Borras, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina - Materia
-
COMPLEX TRAITS
GENETIC BACKGROUND EFFECTS
GRAIN-FILLING DURATION
KERNEL GROWTH RATE
KERNEL WEIGHT
MULTIPARENT ADVANCED GENERATION INTER-CROSS (MAGIC)
MULTIPARENTAL POPULATIONS MPP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180606
Ver los metadatos del registro completo
| id |
CONICETDig_8adb4066dbe768588875e750c6a23cbd |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180606 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The genetic architecture of maize (Zea mays L.) kernel weight determinationAlvarez Prado, SantiagoLopez, Cesar GabrielLynn Senior, MBorras, LucasCOMPLEX TRAITSGENETIC BACKGROUND EFFECTSGRAIN-FILLING DURATIONKERNEL GROWTH RATEKERNEL WEIGHTMULTIPARENT ADVANCED GENERATION INTER-CROSS (MAGIC)MULTIPARENTAL POPULATIONS MPPhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P, 0.001) phenotypic variability and medium-to-high heritability (0.6020.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm.Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; ArgentinaFil: Lopez, Cesar Gabriel. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lynn Senior, M. No especifíca;Fil: Borras, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; ArgentinaGenetics Society of America2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180606Alvarez Prado, Santiago; Lopez, Cesar Gabriel; Lynn Senior, M; Borras, Lucas; The genetic architecture of maize (Zea mays L.) kernel weight determination; Genetics Society of America; G3: Genes, Genomes, Genetics; 4; 9; 8-2014; 1611-16212160-1836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/g3journal/article/4/9/1611/6025933info:eu-repo/semantics/altIdentifier/doi/10.1534/g3.114.013243info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:37:08Zoai:ri.conicet.gov.ar:11336/180606instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:37:09.273CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The genetic architecture of maize (Zea mays L.) kernel weight determination |
| title |
The genetic architecture of maize (Zea mays L.) kernel weight determination |
| spellingShingle |
The genetic architecture of maize (Zea mays L.) kernel weight determination Alvarez Prado, Santiago COMPLEX TRAITS GENETIC BACKGROUND EFFECTS GRAIN-FILLING DURATION KERNEL GROWTH RATE KERNEL WEIGHT MULTIPARENT ADVANCED GENERATION INTER-CROSS (MAGIC) MULTIPARENTAL POPULATIONS MPP |
| title_short |
The genetic architecture of maize (Zea mays L.) kernel weight determination |
| title_full |
The genetic architecture of maize (Zea mays L.) kernel weight determination |
| title_fullStr |
The genetic architecture of maize (Zea mays L.) kernel weight determination |
| title_full_unstemmed |
The genetic architecture of maize (Zea mays L.) kernel weight determination |
| title_sort |
The genetic architecture of maize (Zea mays L.) kernel weight determination |
| dc.creator.none.fl_str_mv |
Alvarez Prado, Santiago Lopez, Cesar Gabriel Lynn Senior, M Borras, Lucas |
| author |
Alvarez Prado, Santiago |
| author_facet |
Alvarez Prado, Santiago Lopez, Cesar Gabriel Lynn Senior, M Borras, Lucas |
| author_role |
author |
| author2 |
Lopez, Cesar Gabriel Lynn Senior, M Borras, Lucas |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
COMPLEX TRAITS GENETIC BACKGROUND EFFECTS GRAIN-FILLING DURATION KERNEL GROWTH RATE KERNEL WEIGHT MULTIPARENT ADVANCED GENERATION INTER-CROSS (MAGIC) MULTIPARENTAL POPULATIONS MPP |
| topic |
COMPLEX TRAITS GENETIC BACKGROUND EFFECTS GRAIN-FILLING DURATION KERNEL GROWTH RATE KERNEL WEIGHT MULTIPARENT ADVANCED GENERATION INTER-CROSS (MAGIC) MULTIPARENTAL POPULATIONS MPP |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P, 0.001) phenotypic variability and medium-to-high heritability (0.6020.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina Fil: Lopez, Cesar Gabriel. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lynn Senior, M. No especifíca; Fil: Borras, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina |
| description |
Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P, 0.001) phenotypic variability and medium-to-high heritability (0.6020.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180606 Alvarez Prado, Santiago; Lopez, Cesar Gabriel; Lynn Senior, M; Borras, Lucas; The genetic architecture of maize (Zea mays L.) kernel weight determination; Genetics Society of America; G3: Genes, Genomes, Genetics; 4; 9; 8-2014; 1611-1621 2160-1836 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/180606 |
| identifier_str_mv |
Alvarez Prado, Santiago; Lopez, Cesar Gabriel; Lynn Senior, M; Borras, Lucas; The genetic architecture of maize (Zea mays L.) kernel weight determination; Genetics Society of America; G3: Genes, Genomes, Genetics; 4; 9; 8-2014; 1611-1621 2160-1836 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/g3journal/article/4/9/1611/6025933 info:eu-repo/semantics/altIdentifier/doi/10.1534/g3.114.013243 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Genetics Society of America |
| publisher.none.fl_str_mv |
Genetics Society of America |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597293743210496 |
| score |
12.976206 |