Chaos prediction and bifurcation analysis in control engineering
- Autores
- Alonso, Diego; Calandrini, Guillermo Luis; Berns, Daniel Walther; Paolini, Eduardo Emilio; Moiola, Jorge Luis
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, two different methods to compute the period-doubling route to chaos (or Feigenbaum chaos) in nonlinear systems are presented. The first one is a semi-analytical procedure, based on a symbolic calculation of an approximate monodromy matrix. The second one takes advantage of software packages for continuation of periodic solutions. Both procedures are used to analyze Chua´s circuit. The second method is also applied to the Rössler system and one of the chaotic systems of Sprott. In all three cases, several period-doubling bifurcation points in the parameter space are detected, allowing to compute a sequence of values supposedly converging to Feigenbaum´s constant. This "experimental´´ computer verification agrees with experiments performed by other researchers in real systems. This material has been used in final projects in a graduate course in dynamical systems.
Fil: Alonso, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Calandrini, Guillermo Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Berns, Daniel Walther. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina
Fil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina - Materia
-
PERIOD-DOUBLING BIFURCATIONS
FEIGENBAUM´S CONSTANT
CHAOTIC SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104064
Ver los metadatos del registro completo
id |
CONICETDig_8aa6fc13c4f33d31c2cafd2f9c878bbb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104064 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chaos prediction and bifurcation analysis in control engineeringAlonso, DiegoCalandrini, Guillermo LuisBerns, Daniel WaltherPaolini, Eduardo EmilioMoiola, Jorge LuisPERIOD-DOUBLING BIFURCATIONSFEIGENBAUM´S CONSTANTCHAOTIC SYSTEMShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper, two different methods to compute the period-doubling route to chaos (or Feigenbaum chaos) in nonlinear systems are presented. The first one is a semi-analytical procedure, based on a symbolic calculation of an approximate monodromy matrix. The second one takes advantage of software packages for continuation of periodic solutions. Both procedures are used to analyze Chua´s circuit. The second method is also applied to the Rössler system and one of the chaotic systems of Sprott. In all three cases, several period-doubling bifurcation points in the parameter space are detected, allowing to compute a sequence of values supposedly converging to Feigenbaum´s constant. This "experimental´´ computer verification agrees with experiments performed by other researchers in real systems. This material has been used in final projects in a graduate course in dynamical systems.Fil: Alonso, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Calandrini, Guillermo Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Berns, Daniel Walther. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaPlanta Piloto de Ingeniería Química2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104064Alonso, Diego; Calandrini, Guillermo Luis; Berns, Daniel Walther; Paolini, Eduardo Emilio; Moiola, Jorge Luis; Chaos prediction and bifurcation analysis in control engineering; Planta Piloto de Ingeniería Química; Latin American Applied Research; 31; 3; 12-2001; 185-1920327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/i31_03.htminfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:00Zoai:ri.conicet.gov.ar:11336/104064instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:01.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chaos prediction and bifurcation analysis in control engineering |
title |
Chaos prediction and bifurcation analysis in control engineering |
spellingShingle |
Chaos prediction and bifurcation analysis in control engineering Alonso, Diego PERIOD-DOUBLING BIFURCATIONS FEIGENBAUM´S CONSTANT CHAOTIC SYSTEMS |
title_short |
Chaos prediction and bifurcation analysis in control engineering |
title_full |
Chaos prediction and bifurcation analysis in control engineering |
title_fullStr |
Chaos prediction and bifurcation analysis in control engineering |
title_full_unstemmed |
Chaos prediction and bifurcation analysis in control engineering |
title_sort |
Chaos prediction and bifurcation analysis in control engineering |
dc.creator.none.fl_str_mv |
Alonso, Diego Calandrini, Guillermo Luis Berns, Daniel Walther Paolini, Eduardo Emilio Moiola, Jorge Luis |
author |
Alonso, Diego |
author_facet |
Alonso, Diego Calandrini, Guillermo Luis Berns, Daniel Walther Paolini, Eduardo Emilio Moiola, Jorge Luis |
author_role |
author |
author2 |
Calandrini, Guillermo Luis Berns, Daniel Walther Paolini, Eduardo Emilio Moiola, Jorge Luis |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
PERIOD-DOUBLING BIFURCATIONS FEIGENBAUM´S CONSTANT CHAOTIC SYSTEMS |
topic |
PERIOD-DOUBLING BIFURCATIONS FEIGENBAUM´S CONSTANT CHAOTIC SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper, two different methods to compute the period-doubling route to chaos (or Feigenbaum chaos) in nonlinear systems are presented. The first one is a semi-analytical procedure, based on a symbolic calculation of an approximate monodromy matrix. The second one takes advantage of software packages for continuation of periodic solutions. Both procedures are used to analyze Chua´s circuit. The second method is also applied to the Rössler system and one of the chaotic systems of Sprott. In all three cases, several period-doubling bifurcation points in the parameter space are detected, allowing to compute a sequence of values supposedly converging to Feigenbaum´s constant. This "experimental´´ computer verification agrees with experiments performed by other researchers in real systems. This material has been used in final projects in a graduate course in dynamical systems. Fil: Alonso, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Calandrini, Guillermo Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Berns, Daniel Walther. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina Fil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina |
description |
In this paper, two different methods to compute the period-doubling route to chaos (or Feigenbaum chaos) in nonlinear systems are presented. The first one is a semi-analytical procedure, based on a symbolic calculation of an approximate monodromy matrix. The second one takes advantage of software packages for continuation of periodic solutions. Both procedures are used to analyze Chua´s circuit. The second method is also applied to the Rössler system and one of the chaotic systems of Sprott. In all three cases, several period-doubling bifurcation points in the parameter space are detected, allowing to compute a sequence of values supposedly converging to Feigenbaum´s constant. This "experimental´´ computer verification agrees with experiments performed by other researchers in real systems. This material has been used in final projects in a graduate course in dynamical systems. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104064 Alonso, Diego; Calandrini, Guillermo Luis; Berns, Daniel Walther; Paolini, Eduardo Emilio; Moiola, Jorge Luis; Chaos prediction and bifurcation analysis in control engineering; Planta Piloto de Ingeniería Química; Latin American Applied Research; 31; 3; 12-2001; 185-192 0327-0793 1851-8796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104064 |
identifier_str_mv |
Alonso, Diego; Calandrini, Guillermo Luis; Berns, Daniel Walther; Paolini, Eduardo Emilio; Moiola, Jorge Luis; Chaos prediction and bifurcation analysis in control engineering; Planta Piloto de Ingeniería Química; Latin American Applied Research; 31; 3; 12-2001; 185-192 0327-0793 1851-8796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/i31_03.htm |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613200127983616 |
score |
13.070432 |