Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
- Autores
- Mercado, Maria Victoria; Esteves Miramont, Alfredo; Filippin, Maria Celina; Flores Larsen, Silvana Elinor
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800W) panel temperature increases from 36°C to 92°C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room's operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room's floor area, operative temperature grows 3.1°C higher than inside air temperature when solar radiation is 500W/m 2 . The analysis shows that a thermal asymmetry appears only when SIRASOL's surface area to floor area ratio is higher than 32%.
Fil: Mercado, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Esteves Miramont, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina - Materia
-
ENERGY SAVINGS
PASSIVE SOLAR SYSTEM
RADIANT HEATING
THERMAL COMFORT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85255
Ver los metadatos del registro completo
id |
CONICETDig_8a626cc4e04fbc4dccc265eebe33b087 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85255 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysisMercado, Maria VictoriaEsteves Miramont, AlfredoFilippin, Maria CelinaFlores Larsen, Silvana ElinorENERGY SAVINGSPASSIVE SOLAR SYSTEMRADIANT HEATINGTHERMAL COMFORThttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800W) panel temperature increases from 36°C to 92°C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room's operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room's floor area, operative temperature grows 3.1°C higher than inside air temperature when solar radiation is 500W/m 2 . The analysis shows that a thermal asymmetry appears only when SIRASOL's surface area to floor area ratio is higher than 32%.Fil: Mercado, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Esteves Miramont, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaPergamon-Elsevier Science Ltd2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85255Mercado, Maria Victoria; Esteves Miramont, Alfredo; Filippin, Maria Celina; Flores Larsen, Silvana Elinor; Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis; Pergamon-Elsevier Science Ltd; Solar Energy; 96; 10-2013; 10-200038-092XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.solener.2013.06.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038092X13002387info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:51Zoai:ri.conicet.gov.ar:11336/85255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:51.946CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis |
title |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis |
spellingShingle |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis Mercado, Maria Victoria ENERGY SAVINGS PASSIVE SOLAR SYSTEM RADIANT HEATING THERMAL COMFORT |
title_short |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis |
title_full |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis |
title_fullStr |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis |
title_full_unstemmed |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis |
title_sort |
Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis |
dc.creator.none.fl_str_mv |
Mercado, Maria Victoria Esteves Miramont, Alfredo Filippin, Maria Celina Flores Larsen, Silvana Elinor |
author |
Mercado, Maria Victoria |
author_facet |
Mercado, Maria Victoria Esteves Miramont, Alfredo Filippin, Maria Celina Flores Larsen, Silvana Elinor |
author_role |
author |
author2 |
Esteves Miramont, Alfredo Filippin, Maria Celina Flores Larsen, Silvana Elinor |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ENERGY SAVINGS PASSIVE SOLAR SYSTEM RADIANT HEATING THERMAL COMFORT |
topic |
ENERGY SAVINGS PASSIVE SOLAR SYSTEM RADIANT HEATING THERMAL COMFORT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800W) panel temperature increases from 36°C to 92°C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room's operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room's floor area, operative temperature grows 3.1°C higher than inside air temperature when solar radiation is 500W/m 2 . The analysis shows that a thermal asymmetry appears only when SIRASOL's surface area to floor area ratio is higher than 32%. Fil: Mercado, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina Fil: Esteves Miramont, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina Fil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina Fil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina |
description |
When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800W) panel temperature increases from 36°C to 92°C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room's operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room's floor area, operative temperature grows 3.1°C higher than inside air temperature when solar radiation is 500W/m 2 . The analysis shows that a thermal asymmetry appears only when SIRASOL's surface area to floor area ratio is higher than 32%. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85255 Mercado, Maria Victoria; Esteves Miramont, Alfredo; Filippin, Maria Celina; Flores Larsen, Silvana Elinor; Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis; Pergamon-Elsevier Science Ltd; Solar Energy; 96; 10-2013; 10-20 0038-092X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85255 |
identifier_str_mv |
Mercado, Maria Victoria; Esteves Miramont, Alfredo; Filippin, Maria Celina; Flores Larsen, Silvana Elinor; Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis; Pergamon-Elsevier Science Ltd; Solar Energy; 96; 10-2013; 10-20 0038-092X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.solener.2013.06.017 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038092X13002387 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268998885965824 |
score |
13.13397 |