Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis

Autores
Mercado, Maria Victoria; Esteves Miramont, Alfredo; Filippin, Maria Celina; Flores Larsen, Silvana Elinor
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800W) panel temperature increases from 36°C to 92°C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room's operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room's floor area, operative temperature grows 3.1°C higher than inside air temperature when solar radiation is 500W/m 2 . The analysis shows that a thermal asymmetry appears only when SIRASOL's surface area to floor area ratio is higher than 32%.
Fil: Mercado, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Esteves Miramont, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
Materia
ENERGY SAVINGS
PASSIVE SOLAR SYSTEM
RADIANT HEATING
THERMAL COMFORT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85255

id CONICETDig_8a626cc4e04fbc4dccc265eebe33b087
oai_identifier_str oai:ri.conicet.gov.ar:11336/85255
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysisMercado, Maria VictoriaEsteves Miramont, AlfredoFilippin, Maria CelinaFlores Larsen, Silvana ElinorENERGY SAVINGSPASSIVE SOLAR SYSTEMRADIANT HEATINGTHERMAL COMFORThttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800W) panel temperature increases from 36°C to 92°C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room's operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room's floor area, operative temperature grows 3.1°C higher than inside air temperature when solar radiation is 500W/m 2 . The analysis shows that a thermal asymmetry appears only when SIRASOL's surface area to floor area ratio is higher than 32%.Fil: Mercado, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Esteves Miramont, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; ArgentinaFil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaPergamon-Elsevier Science Ltd2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85255Mercado, Maria Victoria; Esteves Miramont, Alfredo; Filippin, Maria Celina; Flores Larsen, Silvana Elinor; Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis; Pergamon-Elsevier Science Ltd; Solar Energy; 96; 10-2013; 10-200038-092XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.solener.2013.06.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038092X13002387info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:51Zoai:ri.conicet.gov.ar:11336/85255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:51.946CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
title Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
spellingShingle Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
Mercado, Maria Victoria
ENERGY SAVINGS
PASSIVE SOLAR SYSTEM
RADIANT HEATING
THERMAL COMFORT
title_short Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
title_full Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
title_fullStr Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
title_full_unstemmed Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
title_sort Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis
dc.creator.none.fl_str_mv Mercado, Maria Victoria
Esteves Miramont, Alfredo
Filippin, Maria Celina
Flores Larsen, Silvana Elinor
author Mercado, Maria Victoria
author_facet Mercado, Maria Victoria
Esteves Miramont, Alfredo
Filippin, Maria Celina
Flores Larsen, Silvana Elinor
author_role author
author2 Esteves Miramont, Alfredo
Filippin, Maria Celina
Flores Larsen, Silvana Elinor
author2_role author
author
author
dc.subject.none.fl_str_mv ENERGY SAVINGS
PASSIVE SOLAR SYSTEM
RADIANT HEATING
THERMAL COMFORT
topic ENERGY SAVINGS
PASSIVE SOLAR SYSTEM
RADIANT HEATING
THERMAL COMFORT
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.7
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800W) panel temperature increases from 36°C to 92°C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room's operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room's floor area, operative temperature grows 3.1°C higher than inside air temperature when solar radiation is 500W/m 2 . The analysis shows that a thermal asymmetry appears only when SIRASOL's surface area to floor area ratio is higher than 32%.
Fil: Mercado, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Esteves Miramont, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Filippin, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
Fil: Flores Larsen, Silvana Elinor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
description When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800W) panel temperature increases from 36°C to 92°C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room's operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room's floor area, operative temperature grows 3.1°C higher than inside air temperature when solar radiation is 500W/m 2 . The analysis shows that a thermal asymmetry appears only when SIRASOL's surface area to floor area ratio is higher than 32%.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85255
Mercado, Maria Victoria; Esteves Miramont, Alfredo; Filippin, Maria Celina; Flores Larsen, Silvana Elinor; Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis; Pergamon-Elsevier Science Ltd; Solar Energy; 96; 10-2013; 10-20
0038-092X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85255
identifier_str_mv Mercado, Maria Victoria; Esteves Miramont, Alfredo; Filippin, Maria Celina; Flores Larsen, Silvana Elinor; Passive solar radiant system, SIRASOL. Physical-mathematical modeling and sensitivity analysis; Pergamon-Elsevier Science Ltd; Solar Energy; 96; 10-2013; 10-20
0038-092X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.solener.2013.06.017
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038092X13002387
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268998885965824
score 13.13397