Approximation of deterministic mean field games under polynomial growth conditions on the data
- Autores
- Gianatti, Justina; Silva, Francisco J.; Zorkot, Ahmad
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a deterministic mean field game problem in which a typical agent solves an optimal control problem where the dynamics is affine with respect to the control and the cost functional has a growth which is polynomial with respect to the state variable. In this framework, we construct a mean field game problem in discrete time and finite state space that approximates equilibria of the original game. Two numerical examples, solved with the fictitious play method, are presented.
Fil: Gianatti, Justina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Silva, Francisco J.. Universite de Limoges; Francia
Fil: Zorkot, Ahmad. Universite de Limoges; Francia - Materia
-
DETERMINISTIC MEAN FIELD GAMES
CONTROL-AFFINE DYNAMICS
LAGRANGIAN EQUILIBRIUM
APPROXIMATION OF EQUILIBRIA
CONVERGENCE RESULTS
NUMERICAL EXPERIENCES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258316
Ver los metadatos del registro completo
id |
CONICETDig_8a09196cd2c64254be674f31b4115f8a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258316 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximation of deterministic mean field games under polynomial growth conditions on the dataGianatti, JustinaSilva, Francisco J.Zorkot, AhmadDETERMINISTIC MEAN FIELD GAMESCONTROL-AFFINE DYNAMICSLAGRANGIAN EQUILIBRIUMAPPROXIMATION OF EQUILIBRIACONVERGENCE RESULTSNUMERICAL EXPERIENCEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a deterministic mean field game problem in which a typical agent solves an optimal control problem where the dynamics is affine with respect to the control and the cost functional has a growth which is polynomial with respect to the state variable. In this framework, we construct a mean field game problem in discrete time and finite state space that approximates equilibria of the original game. Two numerical examples, solved with the fictitious play method, are presented.Fil: Gianatti, Justina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Silva, Francisco J.. Universite de Limoges; FranciaFil: Zorkot, Ahmad. Universite de Limoges; FranciaAmerican Institute of Mathematical Sciences2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258316Gianatti, Justina; Silva, Francisco J.; Zorkot, Ahmad; Approximation of deterministic mean field games under polynomial growth conditions on the data; American Institute of Mathematical Sciences; Journal of Dynamics and Games; 11; 2; 4-2024; 131-1492164-60662164-6074CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/jdg.2023018info:eu-repo/semantics/altIdentifier/doi/10.3934/jdg.2023018info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2305.01445info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:31Zoai:ri.conicet.gov.ar:11336/258316instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:32.202CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximation of deterministic mean field games under polynomial growth conditions on the data |
title |
Approximation of deterministic mean field games under polynomial growth conditions on the data |
spellingShingle |
Approximation of deterministic mean field games under polynomial growth conditions on the data Gianatti, Justina DETERMINISTIC MEAN FIELD GAMES CONTROL-AFFINE DYNAMICS LAGRANGIAN EQUILIBRIUM APPROXIMATION OF EQUILIBRIA CONVERGENCE RESULTS NUMERICAL EXPERIENCES |
title_short |
Approximation of deterministic mean field games under polynomial growth conditions on the data |
title_full |
Approximation of deterministic mean field games under polynomial growth conditions on the data |
title_fullStr |
Approximation of deterministic mean field games under polynomial growth conditions on the data |
title_full_unstemmed |
Approximation of deterministic mean field games under polynomial growth conditions on the data |
title_sort |
Approximation of deterministic mean field games under polynomial growth conditions on the data |
dc.creator.none.fl_str_mv |
Gianatti, Justina Silva, Francisco J. Zorkot, Ahmad |
author |
Gianatti, Justina |
author_facet |
Gianatti, Justina Silva, Francisco J. Zorkot, Ahmad |
author_role |
author |
author2 |
Silva, Francisco J. Zorkot, Ahmad |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DETERMINISTIC MEAN FIELD GAMES CONTROL-AFFINE DYNAMICS LAGRANGIAN EQUILIBRIUM APPROXIMATION OF EQUILIBRIA CONVERGENCE RESULTS NUMERICAL EXPERIENCES |
topic |
DETERMINISTIC MEAN FIELD GAMES CONTROL-AFFINE DYNAMICS LAGRANGIAN EQUILIBRIUM APPROXIMATION OF EQUILIBRIA CONVERGENCE RESULTS NUMERICAL EXPERIENCES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a deterministic mean field game problem in which a typical agent solves an optimal control problem where the dynamics is affine with respect to the control and the cost functional has a growth which is polynomial with respect to the state variable. In this framework, we construct a mean field game problem in discrete time and finite state space that approximates equilibria of the original game. Two numerical examples, solved with the fictitious play method, are presented. Fil: Gianatti, Justina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Silva, Francisco J.. Universite de Limoges; Francia Fil: Zorkot, Ahmad. Universite de Limoges; Francia |
description |
We consider a deterministic mean field game problem in which a typical agent solves an optimal control problem where the dynamics is affine with respect to the control and the cost functional has a growth which is polynomial with respect to the state variable. In this framework, we construct a mean field game problem in discrete time and finite state space that approximates equilibria of the original game. Two numerical examples, solved with the fictitious play method, are presented. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258316 Gianatti, Justina; Silva, Francisco J.; Zorkot, Ahmad; Approximation of deterministic mean field games under polynomial growth conditions on the data; American Institute of Mathematical Sciences; Journal of Dynamics and Games; 11; 2; 4-2024; 131-149 2164-6066 2164-6074 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/258316 |
identifier_str_mv |
Gianatti, Justina; Silva, Francisco J.; Zorkot, Ahmad; Approximation of deterministic mean field games under polynomial growth conditions on the data; American Institute of Mathematical Sciences; Journal of Dynamics and Games; 11; 2; 4-2024; 131-149 2164-6066 2164-6074 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/jdg.2023018 info:eu-repo/semantics/altIdentifier/doi/10.3934/jdg.2023018 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2305.01445 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269036812959744 |
score |
13.13397 |