Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions

Autores
Nandi, Saikat; Agnihotri, A. N.; Tachino, Carmen Alejandra; Rivarola, Roberto Daniel; Martín, F.; Tribedi, Lokesh C.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have measured the double differential cross sections (DDCSs) for low energy electron emission from O2 under the impact of 51 MeV bare carbon ions. This study is aimed at investigating the Young-type interference in electron emission from a multi-electronic diatomic molecule. The DDCS spectra, differential in emission energy and angle, are compared with state-of-the-art continuum distorted wave-eikonal initial state (CDW-EIS) calculations. The DDCS ratios (i.e. O2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2 under the impact of 51 MeV bare carbon ions. This study is aimed at investigating the Young-type interference in electron emission from a multi-electronic diatomic molecule. The DDCS spectra, differential in emission energy and angle, are compared with state-of-the-art continuum distorted wave-eikonal initial state (CDW-EIS) calculations. The DDCS ratios (i.e. O2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.
Fil: Nandi, Saikat. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España
Fil: Agnihotri, A. N.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España
Fil: Tachino, Carmen Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Martín, F.. Universidad Autónoma de Madrid; España
Fil: Tribedi, Lokesh C.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España
Materia
iones de carbono
molécula de oxígeno
ionización
interferencia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/273868

id CONICETDig_89336b41dea84749a74077b8debe7561
oai_identifier_str oai:ri.conicet.gov.ar:11336/273868
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ionsNandi, SaikatAgnihotri, A. N.Tachino, Carmen AlejandraRivarola, Roberto DanielMartín, F.Tribedi, Lokesh C.iones de carbonomolécula de oxígenoionizacióninterferenciahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have measured the double differential cross sections (DDCSs) for low energy electron emission from O2 under the impact of 51 MeV bare carbon ions. This study is aimed at investigating the Young-type interference in electron emission from a multi-electronic diatomic molecule. The DDCS spectra, differential in emission energy and angle, are compared with state-of-the-art continuum distorted wave-eikonal initial state (CDW-EIS) calculations. The DDCS ratios (i.e. O2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2 under the impact of 51 MeV bare carbon ions. This study is aimed at investigating the Young-type interference in electron emission from a multi-electronic diatomic molecule. The DDCS spectra, differential in emission energy and angle, are compared with state-of-the-art continuum distorted wave-eikonal initial state (CDW-EIS) calculations. The DDCS ratios (i.e. O2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.Fil: Nandi, Saikat. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Agnihotri, A. N.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Tachino, Carmen Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Martín, F.. Universidad Autónoma de Madrid; EspañaFil: Tribedi, Lokesh C.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaIOP Publishing2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273868Nandi, Saikat; Agnihotri, A. N.; Tachino, Carmen Alejandra; Rivarola, Roberto Daniel; Martín, F.; et al.; Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 45; 21; 10-2012; 1-70953-4075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0953-4075/45/21/215207info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-4075/45/21/215207info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:37:46Zoai:ri.conicet.gov.ar:11336/273868instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:37:46.282CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions
title Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions
spellingShingle Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions
Nandi, Saikat
iones de carbono
molécula de oxígeno
ionización
interferencia
title_short Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions
title_full Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions
title_fullStr Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions
title_full_unstemmed Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions
title_sort Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions
dc.creator.none.fl_str_mv Nandi, Saikat
Agnihotri, A. N.
Tachino, Carmen Alejandra
Rivarola, Roberto Daniel
Martín, F.
Tribedi, Lokesh C.
author Nandi, Saikat
author_facet Nandi, Saikat
Agnihotri, A. N.
Tachino, Carmen Alejandra
Rivarola, Roberto Daniel
Martín, F.
Tribedi, Lokesh C.
author_role author
author2 Agnihotri, A. N.
Tachino, Carmen Alejandra
Rivarola, Roberto Daniel
Martín, F.
Tribedi, Lokesh C.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv iones de carbono
molécula de oxígeno
ionización
interferencia
topic iones de carbono
molécula de oxígeno
ionización
interferencia
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We have measured the double differential cross sections (DDCSs) for low energy electron emission from O2 under the impact of 51 MeV bare carbon ions. This study is aimed at investigating the Young-type interference in electron emission from a multi-electronic diatomic molecule. The DDCS spectra, differential in emission energy and angle, are compared with state-of-the-art continuum distorted wave-eikonal initial state (CDW-EIS) calculations. The DDCS ratios (i.e. O2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2 under the impact of 51 MeV bare carbon ions. This study is aimed at investigating the Young-type interference in electron emission from a multi-electronic diatomic molecule. The DDCS spectra, differential in emission energy and angle, are compared with state-of-the-art continuum distorted wave-eikonal initial state (CDW-EIS) calculations. The DDCS ratios (i.e. O2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.
Fil: Nandi, Saikat. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España
Fil: Agnihotri, A. N.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España
Fil: Tachino, Carmen Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Martín, F.. Universidad Autónoma de Madrid; España
Fil: Tribedi, Lokesh C.. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; España
description We have measured the double differential cross sections (DDCSs) for low energy electron emission from O2 under the impact of 51 MeV bare carbon ions. This study is aimed at investigating the Young-type interference in electron emission from a multi-electronic diatomic molecule. The DDCS spectra, differential in emission energy and angle, are compared with state-of-the-art continuum distorted wave-eikonal initial state (CDW-EIS) calculations. The DDCS ratios (i.e. O2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2 under the impact of 51 MeV bare carbon ions. This study is aimed at investigating the Young-type interference in electron emission from a multi-electronic diatomic molecule. The DDCS spectra, differential in emission energy and angle, are compared with state-of-the-art continuum distorted wave-eikonal initial state (CDW-EIS) calculations. The DDCS ratios (i.e. O2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2/2O) do not produce any oscillatory behaviour due to the interference effect unlike that observed in the case of H2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.2. The forward–backward angular asymmetry parameter, deduced from the measured DDCS values, is found to be a monotonically increasing function of electron velocity and does not show any oscillation. These observations are in qualitative agreement with the prediction of the molecular CDW-EIS model which uses a linear combination of atomic orbitals. The apparent absence of the oscillation in the spectra is qualitatively explained in terms of cancellation of contributions arising from different molecular orbitals.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/273868
Nandi, Saikat; Agnihotri, A. N.; Tachino, Carmen Alejandra; Rivarola, Roberto Daniel; Martín, F.; et al.; Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 45; 21; 10-2012; 1-7
0953-4075
CONICET Digital
CONICET
url http://hdl.handle.net/11336/273868
identifier_str_mv Nandi, Saikat; Agnihotri, A. N.; Tachino, Carmen Alejandra; Rivarola, Roberto Daniel; Martín, F.; et al.; Investigation of the interference effect in the case of low energy electron emission from O 2 in collisions with fast bare C-ions; IOP Publishing; Journal of Physics B: Atomic, Molecular and Optical Physics; 45; 21; 10-2012; 1-7
0953-4075
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0953-4075/45/21/215207
info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-4075/45/21/215207
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597335243751424
score 12.976206