Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities

Autores
Villafañe, Viviana Daniela; Sesin, Pablo Ezequiel; Soubelet, Pedro Ignacio; Anguiano, Sebastian; Bruchhausen, Axel Emerico; Rozas, Guillermo; Gomez Carbonell, C.; Lemaître, A.; Fainstein, Alejandro
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Radiation pressure, electrostriction, and photothermal forces have been investigated to evidence backaction, nonlinearities, and quantum phenomena in cavity optomechanics. We show here through a detailed study of the relative intensity of the cavity mechanical modes observed when exciting with pulsed lasers close to the GaAs optical gap that optoelectronic forces involving real carrier excitation and deformation potential interaction are the strongest mechanism of light-to-sound transduction in semiconductor GaAs/AlAs distributed Bragg reflector optomechanical resonators. We demonstrate that the ultrafast spatial redistribution of the photoexcited carriers in microcavities with massive GaAs spacers leads to an enhanced coupling to the fundamental 20-GHz vertically polarized mechanical breathing mode. The carrier diffusion along the growth axis of the device can be enhanced by increasing the laser power, or limited by embedding GaAs quantum wells in the cavity spacer, a strategy used here to prove and engineer the optoelectronic forces in phonon generation with real carriers. The wavelength dependence of the observed phenomena provide further proof of the role of optoelectronic forces. The optical forces associated with the different intervening mechanisms and their relevance for dynamical backaction in optomechanics are evaluated using finite-element methods. The results presented open the path to the study of hitherto seldom investigated dynamical backaction in optomechanical solid-state resonators in the presence of optoelectronic forces.
Fil: Villafañe, Viviana Daniela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Sesin, Pablo Ezequiel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Soubelet, Pedro Ignacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Anguiano, Sebastian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Rozas, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Gomez Carbonell, C.. Université Paris Sud; Francia
Fil: Lemaître, A.. Université Paris Sud; Francia
Fil: Fainstein, Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
OPTOELECTRONIC
OPTOMECHANICS
SEMICONDUCTOR
MICROCAVITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112449

id CONICETDig_88faf401a2a2f9fc16d44954827f707d
oai_identifier_str oai:ri.conicet.gov.ar:11336/112449
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavitiesVillafañe, Viviana DanielaSesin, Pablo EzequielSoubelet, Pedro IgnacioAnguiano, SebastianBruchhausen, Axel EmericoRozas, GuillermoGomez Carbonell, C.Lemaître, A.Fainstein, AlejandroOPTOELECTRONICOPTOMECHANICSSEMICONDUCTORMICROCAVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Radiation pressure, electrostriction, and photothermal forces have been investigated to evidence backaction, nonlinearities, and quantum phenomena in cavity optomechanics. We show here through a detailed study of the relative intensity of the cavity mechanical modes observed when exciting with pulsed lasers close to the GaAs optical gap that optoelectronic forces involving real carrier excitation and deformation potential interaction are the strongest mechanism of light-to-sound transduction in semiconductor GaAs/AlAs distributed Bragg reflector optomechanical resonators. We demonstrate that the ultrafast spatial redistribution of the photoexcited carriers in microcavities with massive GaAs spacers leads to an enhanced coupling to the fundamental 20-GHz vertically polarized mechanical breathing mode. The carrier diffusion along the growth axis of the device can be enhanced by increasing the laser power, or limited by embedding GaAs quantum wells in the cavity spacer, a strategy used here to prove and engineer the optoelectronic forces in phonon generation with real carriers. The wavelength dependence of the observed phenomena provide further proof of the role of optoelectronic forces. The optical forces associated with the different intervening mechanisms and their relevance for dynamical backaction in optomechanics are evaluated using finite-element methods. The results presented open the path to the study of hitherto seldom investigated dynamical backaction in optomechanical solid-state resonators in the presence of optoelectronic forces.Fil: Villafañe, Viviana Daniela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Sesin, Pablo Ezequiel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Soubelet, Pedro Ignacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Anguiano, Sebastian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Rozas, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Gomez Carbonell, C.. Université Paris Sud; FranciaFil: Lemaître, A.. Université Paris Sud; FranciaFil: Fainstein, Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Physical Society2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112449Villafañe, Viviana Daniela; Sesin, Pablo Ezequiel; Soubelet, Pedro Ignacio; Anguiano, Sebastian; Bruchhausen, Axel Emerico; et al.; Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities; American Physical Society; Physical Review B; 97; 19; 5-2018; 1-81098-01212469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/pdf/10.1103/PhysRevB.97.195306info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.97.195306info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:04Zoai:ri.conicet.gov.ar:11336/112449instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:04.937CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities
title Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities
spellingShingle Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities
Villafañe, Viviana Daniela
OPTOELECTRONIC
OPTOMECHANICS
SEMICONDUCTOR
MICROCAVITY
title_short Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities
title_full Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities
title_fullStr Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities
title_full_unstemmed Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities
title_sort Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities
dc.creator.none.fl_str_mv Villafañe, Viviana Daniela
Sesin, Pablo Ezequiel
Soubelet, Pedro Ignacio
Anguiano, Sebastian
Bruchhausen, Axel Emerico
Rozas, Guillermo
Gomez Carbonell, C.
Lemaître, A.
Fainstein, Alejandro
author Villafañe, Viviana Daniela
author_facet Villafañe, Viviana Daniela
Sesin, Pablo Ezequiel
Soubelet, Pedro Ignacio
Anguiano, Sebastian
Bruchhausen, Axel Emerico
Rozas, Guillermo
Gomez Carbonell, C.
Lemaître, A.
Fainstein, Alejandro
author_role author
author2 Sesin, Pablo Ezequiel
Soubelet, Pedro Ignacio
Anguiano, Sebastian
Bruchhausen, Axel Emerico
Rozas, Guillermo
Gomez Carbonell, C.
Lemaître, A.
Fainstein, Alejandro
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv OPTOELECTRONIC
OPTOMECHANICS
SEMICONDUCTOR
MICROCAVITY
topic OPTOELECTRONIC
OPTOMECHANICS
SEMICONDUCTOR
MICROCAVITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Radiation pressure, electrostriction, and photothermal forces have been investigated to evidence backaction, nonlinearities, and quantum phenomena in cavity optomechanics. We show here through a detailed study of the relative intensity of the cavity mechanical modes observed when exciting with pulsed lasers close to the GaAs optical gap that optoelectronic forces involving real carrier excitation and deformation potential interaction are the strongest mechanism of light-to-sound transduction in semiconductor GaAs/AlAs distributed Bragg reflector optomechanical resonators. We demonstrate that the ultrafast spatial redistribution of the photoexcited carriers in microcavities with massive GaAs spacers leads to an enhanced coupling to the fundamental 20-GHz vertically polarized mechanical breathing mode. The carrier diffusion along the growth axis of the device can be enhanced by increasing the laser power, or limited by embedding GaAs quantum wells in the cavity spacer, a strategy used here to prove and engineer the optoelectronic forces in phonon generation with real carriers. The wavelength dependence of the observed phenomena provide further proof of the role of optoelectronic forces. The optical forces associated with the different intervening mechanisms and their relevance for dynamical backaction in optomechanics are evaluated using finite-element methods. The results presented open the path to the study of hitherto seldom investigated dynamical backaction in optomechanical solid-state resonators in the presence of optoelectronic forces.
Fil: Villafañe, Viviana Daniela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Sesin, Pablo Ezequiel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Soubelet, Pedro Ignacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Anguiano, Sebastian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Rozas, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Gomez Carbonell, C.. Université Paris Sud; Francia
Fil: Lemaître, A.. Université Paris Sud; Francia
Fil: Fainstein, Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description Radiation pressure, electrostriction, and photothermal forces have been investigated to evidence backaction, nonlinearities, and quantum phenomena in cavity optomechanics. We show here through a detailed study of the relative intensity of the cavity mechanical modes observed when exciting with pulsed lasers close to the GaAs optical gap that optoelectronic forces involving real carrier excitation and deformation potential interaction are the strongest mechanism of light-to-sound transduction in semiconductor GaAs/AlAs distributed Bragg reflector optomechanical resonators. We demonstrate that the ultrafast spatial redistribution of the photoexcited carriers in microcavities with massive GaAs spacers leads to an enhanced coupling to the fundamental 20-GHz vertically polarized mechanical breathing mode. The carrier diffusion along the growth axis of the device can be enhanced by increasing the laser power, or limited by embedding GaAs quantum wells in the cavity spacer, a strategy used here to prove and engineer the optoelectronic forces in phonon generation with real carriers. The wavelength dependence of the observed phenomena provide further proof of the role of optoelectronic forces. The optical forces associated with the different intervening mechanisms and their relevance for dynamical backaction in optomechanics are evaluated using finite-element methods. The results presented open the path to the study of hitherto seldom investigated dynamical backaction in optomechanical solid-state resonators in the presence of optoelectronic forces.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112449
Villafañe, Viviana Daniela; Sesin, Pablo Ezequiel; Soubelet, Pedro Ignacio; Anguiano, Sebastian; Bruchhausen, Axel Emerico; et al.; Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities; American Physical Society; Physical Review B; 97; 19; 5-2018; 1-8
1098-0121
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112449
identifier_str_mv Villafañe, Viviana Daniela; Sesin, Pablo Ezequiel; Soubelet, Pedro Ignacio; Anguiano, Sebastian; Bruchhausen, Axel Emerico; et al.; Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities; American Physical Society; Physical Review B; 97; 19; 5-2018; 1-8
1098-0121
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/pdf/10.1103/PhysRevB.97.195306
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.97.195306
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980810268868608
score 12.993085