Formation imprints in the kinematics of the Milky Way globular cluster system
- Autores
- Piatti, Andres Eduardo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We report results on the kinematics of Milky Way (MW) globular clusters (GCs) based on updated space velocities for nearly the entire GC population. We found that a 3D space with the semimajor axis, the eccentricity, and the inclination of the orbit with respect to the MW plane as its axes, is helpful in order to dig into the formation of the GC system. We find that GCs formed in situ show a clear correlation between their eccentricities and their orbital inclination in the sense that clusters with large eccentricities also have large inclinations. These GCs also show a correlation between their distance to the MW center and their eccentricity. Accreted GCs do not exhibit a relationship between eccentricity and inclination, but span a wide variety of inclinations at eccentricities larger than ∼0.5. Finally, we computed the velocity anisotropy β of the GC system and found, for GCs formed in situ, that β decreases from ≈0.8 down to 0.3 from the outermost regions toward the MW center, but remains fairly constant (0.7-0.9) for accreted ones. These findings can be explained if GCs formed from gas that collapsed radially in the outskirts, with a preference for relatively high infall angles. As the material reached the rotating forming disk, it became more circular and moved with a lower inclination relative to the disk. Half of the GC population was accreted and deposited in orbits covering the entire range of energies from the outer halo to the bulge.
Fil: Piatti, Andres Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina - Materia
- GALAXY: FORMATION-GALAXY: STRUCTURE-GLOBULAR CLUSTERS: GENERAL
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128154
Ver los metadatos del registro completo
id |
CONICETDig_872195c566d726e6f1ed98d5f90dce3e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128154 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Formation imprints in the kinematics of the Milky Way globular cluster systemPiatti, Andres EduardoGALAXY: FORMATION-GALAXY: STRUCTURE-GLOBULAR CLUSTERS: GENERALhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1We report results on the kinematics of Milky Way (MW) globular clusters (GCs) based on updated space velocities for nearly the entire GC population. We found that a 3D space with the semimajor axis, the eccentricity, and the inclination of the orbit with respect to the MW plane as its axes, is helpful in order to dig into the formation of the GC system. We find that GCs formed in situ show a clear correlation between their eccentricities and their orbital inclination in the sense that clusters with large eccentricities also have large inclinations. These GCs also show a correlation between their distance to the MW center and their eccentricity. Accreted GCs do not exhibit a relationship between eccentricity and inclination, but span a wide variety of inclinations at eccentricities larger than ∼0.5. Finally, we computed the velocity anisotropy β of the GC system and found, for GCs formed in situ, that β decreases from ≈0.8 down to 0.3 from the outermost regions toward the MW center, but remains fairly constant (0.7-0.9) for accreted ones. These findings can be explained if GCs formed from gas that collapsed radially in the outskirts, with a preference for relatively high infall angles. As the material reached the rotating forming disk, it became more circular and moved with a lower inclination relative to the disk. Half of the GC population was accreted and deposited in orbits covering the entire range of energies from the outer halo to the bulge.Fil: Piatti, Andres Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaIOP Publishing2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128154Piatti, Andres Eduardo; Formation imprints in the kinematics of the Milky Way globular cluster system; IOP Publishing; Astrophysical Journal; 882; 2; 7-20190004-637X1538-4357CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.3847/1538-4357/ab3574info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.09824info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/ab3574info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:35Zoai:ri.conicet.gov.ar:11336/128154instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:35.482CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Formation imprints in the kinematics of the Milky Way globular cluster system |
title |
Formation imprints in the kinematics of the Milky Way globular cluster system |
spellingShingle |
Formation imprints in the kinematics of the Milky Way globular cluster system Piatti, Andres Eduardo GALAXY: FORMATION-GALAXY: STRUCTURE-GLOBULAR CLUSTERS: GENERAL |
title_short |
Formation imprints in the kinematics of the Milky Way globular cluster system |
title_full |
Formation imprints in the kinematics of the Milky Way globular cluster system |
title_fullStr |
Formation imprints in the kinematics of the Milky Way globular cluster system |
title_full_unstemmed |
Formation imprints in the kinematics of the Milky Way globular cluster system |
title_sort |
Formation imprints in the kinematics of the Milky Way globular cluster system |
dc.creator.none.fl_str_mv |
Piatti, Andres Eduardo |
author |
Piatti, Andres Eduardo |
author_facet |
Piatti, Andres Eduardo |
author_role |
author |
dc.subject.none.fl_str_mv |
GALAXY: FORMATION-GALAXY: STRUCTURE-GLOBULAR CLUSTERS: GENERAL |
topic |
GALAXY: FORMATION-GALAXY: STRUCTURE-GLOBULAR CLUSTERS: GENERAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We report results on the kinematics of Milky Way (MW) globular clusters (GCs) based on updated space velocities for nearly the entire GC population. We found that a 3D space with the semimajor axis, the eccentricity, and the inclination of the orbit with respect to the MW plane as its axes, is helpful in order to dig into the formation of the GC system. We find that GCs formed in situ show a clear correlation between their eccentricities and their orbital inclination in the sense that clusters with large eccentricities also have large inclinations. These GCs also show a correlation between their distance to the MW center and their eccentricity. Accreted GCs do not exhibit a relationship between eccentricity and inclination, but span a wide variety of inclinations at eccentricities larger than ∼0.5. Finally, we computed the velocity anisotropy β of the GC system and found, for GCs formed in situ, that β decreases from ≈0.8 down to 0.3 from the outermost regions toward the MW center, but remains fairly constant (0.7-0.9) for accreted ones. These findings can be explained if GCs formed from gas that collapsed radially in the outskirts, with a preference for relatively high infall angles. As the material reached the rotating forming disk, it became more circular and moved with a lower inclination relative to the disk. Half of the GC population was accreted and deposited in orbits covering the entire range of energies from the outer halo to the bulge. Fil: Piatti, Andres Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina |
description |
We report results on the kinematics of Milky Way (MW) globular clusters (GCs) based on updated space velocities for nearly the entire GC population. We found that a 3D space with the semimajor axis, the eccentricity, and the inclination of the orbit with respect to the MW plane as its axes, is helpful in order to dig into the formation of the GC system. We find that GCs formed in situ show a clear correlation between their eccentricities and their orbital inclination in the sense that clusters with large eccentricities also have large inclinations. These GCs also show a correlation between their distance to the MW center and their eccentricity. Accreted GCs do not exhibit a relationship between eccentricity and inclination, but span a wide variety of inclinations at eccentricities larger than ∼0.5. Finally, we computed the velocity anisotropy β of the GC system and found, for GCs formed in situ, that β decreases from ≈0.8 down to 0.3 from the outermost regions toward the MW center, but remains fairly constant (0.7-0.9) for accreted ones. These findings can be explained if GCs formed from gas that collapsed radially in the outskirts, with a preference for relatively high infall angles. As the material reached the rotating forming disk, it became more circular and moved with a lower inclination relative to the disk. Half of the GC population was accreted and deposited in orbits covering the entire range of energies from the outer halo to the bulge. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128154 Piatti, Andres Eduardo; Formation imprints in the kinematics of the Milky Way globular cluster system; IOP Publishing; Astrophysical Journal; 882; 2; 7-2019 0004-637X 1538-4357 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/128154 |
identifier_str_mv |
Piatti, Andres Eduardo; Formation imprints in the kinematics of the Milky Way globular cluster system; IOP Publishing; Astrophysical Journal; 882; 2; 7-2019 0004-637X 1538-4357 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.3847/1538-4357/ab3574 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.09824 info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/ab3574 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613533936910336 |
score |
13.070432 |