Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia

Autores
Eakin, Caroline M.; Lithgow Bertelloni, Carolina; Davila, Federico Miguel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Convection in the Earth?s mantle is mainly driven by cold, dense subducting slabs, but little is known about how 3D variations in slab morphology and buoyancy affect mantle flow or how the surface above deforms in response (i.e. dynamic topography). We investigate this problem by studying the dynamics of an active region of flat-slab subduction located in Peru in South America. Here the slab geometry is well known, based on the regional seismicity, and we have observations from the local geological record to validate our models. Of particular interest is the widespread subsidence and deposition of the Solimões Formation across western Amazonia that coincided with the development of the Peruvian flat-slab during the Mid-Late Miocene. This formation covers an extensive area from the foredeep to the Purus Arch located ~2000 km away from the trench. Close to the Andes the preservation of several kilometers of sedimentary thicknesses can be easily accounted for by flexure. Based on an estimate of the Andean loading we predict 2.8 to 3.6 km of accommodation space that spans 100 km. The spatial and temporal history of the Solimões Formation however, particularly the thick distal foreland accumulations up to 1.2 km deep, can only be matched with the addition of a longer-wavelength dynamic source of topography. Following the transition from normal to flat subduction, we predict over 1 km of dynamic subsidence (~1500 km wide) that propagates over 1000 km away from the trench, tracking the subduction leading edge. This is followed by a pulse of dynamic uplift over the flat segment behind it. We therefore propose that a combination of uplift, flexure and dynamic topography during slab flattening in Peru is responsible for the sedimentation history and landscape evolution of western Amazonia that eventually led to the configuration of the Amazon Drainage Basin we know today.
Fil: Eakin, Caroline M.. University of Yale; Estados Unidos
Fil: Lithgow Bertelloni, Carolina. University College London; Estados Unidos
Fil: Davila, Federico Miguel. University College London; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Materia
Amazonas
Geodinámica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32070

id CONICETDig_871ef2b39c6a56c6d29a27fe49e07365
oai_identifier_str oai:ri.conicet.gov.ar:11336/32070
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Influence of Peruvian flat-subduction dynamics on the evolution of western AmazoniaEakin, Caroline M.Lithgow Bertelloni, CarolinaDavila, Federico MiguelAmazonasGeodinámicahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Convection in the Earth?s mantle is mainly driven by cold, dense subducting slabs, but little is known about how 3D variations in slab morphology and buoyancy affect mantle flow or how the surface above deforms in response (i.e. dynamic topography). We investigate this problem by studying the dynamics of an active region of flat-slab subduction located in Peru in South America. Here the slab geometry is well known, based on the regional seismicity, and we have observations from the local geological record to validate our models. Of particular interest is the widespread subsidence and deposition of the Solimões Formation across western Amazonia that coincided with the development of the Peruvian flat-slab during the Mid-Late Miocene. This formation covers an extensive area from the foredeep to the Purus Arch located ~2000 km away from the trench. Close to the Andes the preservation of several kilometers of sedimentary thicknesses can be easily accounted for by flexure. Based on an estimate of the Andean loading we predict 2.8 to 3.6 km of accommodation space that spans 100 km. The spatial and temporal history of the Solimões Formation however, particularly the thick distal foreland accumulations up to 1.2 km deep, can only be matched with the addition of a longer-wavelength dynamic source of topography. Following the transition from normal to flat subduction, we predict over 1 km of dynamic subsidence (~1500 km wide) that propagates over 1000 km away from the trench, tracking the subduction leading edge. This is followed by a pulse of dynamic uplift over the flat segment behind it. We therefore propose that a combination of uplift, flexure and dynamic topography during slab flattening in Peru is responsible for the sedimentation history and landscape evolution of western Amazonia that eventually led to the configuration of the Amazon Drainage Basin we know today.Fil: Eakin, Caroline M.. University of Yale; Estados UnidosFil: Lithgow Bertelloni, Carolina. University College London; Estados UnidosFil: Davila, Federico Miguel. University College London; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaElsevier2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32070Davila, Federico Miguel; Lithgow Bertelloni, Carolina; Eakin, Caroline M.; Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia; Elsevier; Earth and Planetary Science Letters; 404; 10-2014; 250-2600012-821XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012821X14004828info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2014.07.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:35Zoai:ri.conicet.gov.ar:11336/32070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:35.802CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia
title Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia
spellingShingle Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia
Eakin, Caroline M.
Amazonas
Geodinámica
title_short Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia
title_full Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia
title_fullStr Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia
title_full_unstemmed Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia
title_sort Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia
dc.creator.none.fl_str_mv Eakin, Caroline M.
Lithgow Bertelloni, Carolina
Davila, Federico Miguel
author Eakin, Caroline M.
author_facet Eakin, Caroline M.
Lithgow Bertelloni, Carolina
Davila, Federico Miguel
author_role author
author2 Lithgow Bertelloni, Carolina
Davila, Federico Miguel
author2_role author
author
dc.subject.none.fl_str_mv Amazonas
Geodinámica
topic Amazonas
Geodinámica
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Convection in the Earth?s mantle is mainly driven by cold, dense subducting slabs, but little is known about how 3D variations in slab morphology and buoyancy affect mantle flow or how the surface above deforms in response (i.e. dynamic topography). We investigate this problem by studying the dynamics of an active region of flat-slab subduction located in Peru in South America. Here the slab geometry is well known, based on the regional seismicity, and we have observations from the local geological record to validate our models. Of particular interest is the widespread subsidence and deposition of the Solimões Formation across western Amazonia that coincided with the development of the Peruvian flat-slab during the Mid-Late Miocene. This formation covers an extensive area from the foredeep to the Purus Arch located ~2000 km away from the trench. Close to the Andes the preservation of several kilometers of sedimentary thicknesses can be easily accounted for by flexure. Based on an estimate of the Andean loading we predict 2.8 to 3.6 km of accommodation space that spans 100 km. The spatial and temporal history of the Solimões Formation however, particularly the thick distal foreland accumulations up to 1.2 km deep, can only be matched with the addition of a longer-wavelength dynamic source of topography. Following the transition from normal to flat subduction, we predict over 1 km of dynamic subsidence (~1500 km wide) that propagates over 1000 km away from the trench, tracking the subduction leading edge. This is followed by a pulse of dynamic uplift over the flat segment behind it. We therefore propose that a combination of uplift, flexure and dynamic topography during slab flattening in Peru is responsible for the sedimentation history and landscape evolution of western Amazonia that eventually led to the configuration of the Amazon Drainage Basin we know today.
Fil: Eakin, Caroline M.. University of Yale; Estados Unidos
Fil: Lithgow Bertelloni, Carolina. University College London; Estados Unidos
Fil: Davila, Federico Miguel. University College London; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
description Convection in the Earth?s mantle is mainly driven by cold, dense subducting slabs, but little is known about how 3D variations in slab morphology and buoyancy affect mantle flow or how the surface above deforms in response (i.e. dynamic topography). We investigate this problem by studying the dynamics of an active region of flat-slab subduction located in Peru in South America. Here the slab geometry is well known, based on the regional seismicity, and we have observations from the local geological record to validate our models. Of particular interest is the widespread subsidence and deposition of the Solimões Formation across western Amazonia that coincided with the development of the Peruvian flat-slab during the Mid-Late Miocene. This formation covers an extensive area from the foredeep to the Purus Arch located ~2000 km away from the trench. Close to the Andes the preservation of several kilometers of sedimentary thicknesses can be easily accounted for by flexure. Based on an estimate of the Andean loading we predict 2.8 to 3.6 km of accommodation space that spans 100 km. The spatial and temporal history of the Solimões Formation however, particularly the thick distal foreland accumulations up to 1.2 km deep, can only be matched with the addition of a longer-wavelength dynamic source of topography. Following the transition from normal to flat subduction, we predict over 1 km of dynamic subsidence (~1500 km wide) that propagates over 1000 km away from the trench, tracking the subduction leading edge. This is followed by a pulse of dynamic uplift over the flat segment behind it. We therefore propose that a combination of uplift, flexure and dynamic topography during slab flattening in Peru is responsible for the sedimentation history and landscape evolution of western Amazonia that eventually led to the configuration of the Amazon Drainage Basin we know today.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32070
Davila, Federico Miguel; Lithgow Bertelloni, Carolina; Eakin, Caroline M.; Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia; Elsevier; Earth and Planetary Science Letters; 404; 10-2014; 250-260
0012-821X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32070
identifier_str_mv Davila, Federico Miguel; Lithgow Bertelloni, Carolina; Eakin, Caroline M.; Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia; Elsevier; Earth and Planetary Science Letters; 404; 10-2014; 250-260
0012-821X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012821X14004828
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2014.07.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613253587533824
score 13.070432