Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
- Autores
- Anders, Christian; Ziegenhain, Gerolf; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The processes underlying crater formation by energetic nanoparticle impact are investigated using molecular dynamics simulations. Both metallic and van-der-Waals-bonded targets are studied. We find a transition from crater formation by melt flow at small impact energies to an evaporation (gas flow) mechanism at higher energies. The transition occurs gradually at impact energies per atom of a few tens of the cohesive energy of the target. van-der-Waals-bonded solids do not exhibit the melt flow cratering regime, in agreement with the narrow liquid zone in their phase diagram. We find that the size of the target region heated above the critical temperature roughly corresponds to the crater volume. The transition shows up most clearly in the increase of the volume of ejected material relative to the crater volume. Finally, we demonstrate the punching of dislocations below the crater for high-velocity impact into ductile targets, leading to a contribution of plastic flow to the crater volume.
Fil: Anders, Christian. University of Kaiserslautern; Alemania
Fil: Ziegenhain, Gerolf. University of Kaiserslautern; Alemania
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania - Materia
-
Condensed matter: electrical, magnetic and optical
Condensed matter: structural, mechanical & thermal
Nanoscale science and low-D systems
Astrophysics and astroparticles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/270707
Ver los metadatos del registro completo
id |
CONICETDig_86a4e377f6cda6330bfe869c6ba34d89 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/270707 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flowAnders, ChristianZiegenhain, GerolfRuestes, Carlos JavierBringa, Eduardo MarcialUrbassek, Herbert M.Condensed matter: electrical, magnetic and opticalCondensed matter: structural, mechanical & thermalNanoscale science and low-D systemsAstrophysics and astroparticleshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The processes underlying crater formation by energetic nanoparticle impact are investigated using molecular dynamics simulations. Both metallic and van-der-Waals-bonded targets are studied. We find a transition from crater formation by melt flow at small impact energies to an evaporation (gas flow) mechanism at higher energies. The transition occurs gradually at impact energies per atom of a few tens of the cohesive energy of the target. van-der-Waals-bonded solids do not exhibit the melt flow cratering regime, in agreement with the narrow liquid zone in their phase diagram. We find that the size of the target region heated above the critical temperature roughly corresponds to the crater volume. The transition shows up most clearly in the increase of the volume of ejected material relative to the crater volume. Finally, we demonstrate the punching of dislocations below the crater for high-velocity impact into ductile targets, leading to a contribution of plastic flow to the crater volume.Fil: Anders, Christian. University of Kaiserslautern; AlemaniaFil: Ziegenhain, Gerolf. University of Kaiserslautern; AlemaniaFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Urbassek, Herbert M.. University of Kaiserslautern; AlemaniaIOP Publishing2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/270707Anders, Christian; Ziegenhain, Gerolf; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow; IOP Publishing; New Journal of Physics; 14; 8; 8-2012; 1-161367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/14/8/083016info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/14/8/083016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:50Zoai:ri.conicet.gov.ar:11336/270707instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:50.496CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow |
title |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow |
spellingShingle |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow Anders, Christian Condensed matter: electrical, magnetic and optical Condensed matter: structural, mechanical & thermal Nanoscale science and low-D systems Astrophysics and astroparticles |
title_short |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow |
title_full |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow |
title_fullStr |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow |
title_full_unstemmed |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow |
title_sort |
Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow |
dc.creator.none.fl_str_mv |
Anders, Christian Ziegenhain, Gerolf Ruestes, Carlos Javier Bringa, Eduardo Marcial Urbassek, Herbert M. |
author |
Anders, Christian |
author_facet |
Anders, Christian Ziegenhain, Gerolf Ruestes, Carlos Javier Bringa, Eduardo Marcial Urbassek, Herbert M. |
author_role |
author |
author2 |
Ziegenhain, Gerolf Ruestes, Carlos Javier Bringa, Eduardo Marcial Urbassek, Herbert M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Condensed matter: electrical, magnetic and optical Condensed matter: structural, mechanical & thermal Nanoscale science and low-D systems Astrophysics and astroparticles |
topic |
Condensed matter: electrical, magnetic and optical Condensed matter: structural, mechanical & thermal Nanoscale science and low-D systems Astrophysics and astroparticles |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The processes underlying crater formation by energetic nanoparticle impact are investigated using molecular dynamics simulations. Both metallic and van-der-Waals-bonded targets are studied. We find a transition from crater formation by melt flow at small impact energies to an evaporation (gas flow) mechanism at higher energies. The transition occurs gradually at impact energies per atom of a few tens of the cohesive energy of the target. van-der-Waals-bonded solids do not exhibit the melt flow cratering regime, in agreement with the narrow liquid zone in their phase diagram. We find that the size of the target region heated above the critical temperature roughly corresponds to the crater volume. The transition shows up most clearly in the increase of the volume of ejected material relative to the crater volume. Finally, we demonstrate the punching of dislocations below the crater for high-velocity impact into ductile targets, leading to a contribution of plastic flow to the crater volume. Fil: Anders, Christian. University of Kaiserslautern; Alemania Fil: Ziegenhain, Gerolf. University of Kaiserslautern; Alemania Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania |
description |
The processes underlying crater formation by energetic nanoparticle impact are investigated using molecular dynamics simulations. Both metallic and van-der-Waals-bonded targets are studied. We find a transition from crater formation by melt flow at small impact energies to an evaporation (gas flow) mechanism at higher energies. The transition occurs gradually at impact energies per atom of a few tens of the cohesive energy of the target. van-der-Waals-bonded solids do not exhibit the melt flow cratering regime, in agreement with the narrow liquid zone in their phase diagram. We find that the size of the target region heated above the critical temperature roughly corresponds to the crater volume. The transition shows up most clearly in the increase of the volume of ejected material relative to the crater volume. Finally, we demonstrate the punching of dislocations below the crater for high-velocity impact into ductile targets, leading to a contribution of plastic flow to the crater volume. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/270707 Anders, Christian; Ziegenhain, Gerolf; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow; IOP Publishing; New Journal of Physics; 14; 8; 8-2012; 1-16 1367-2630 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/270707 |
identifier_str_mv |
Anders, Christian; Ziegenhain, Gerolf; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow; IOP Publishing; New Journal of Physics; 14; 8; 8-2012; 1-16 1367-2630 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/14/8/083016 info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/14/8/083016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613858624274432 |
score |
13.070432 |