Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow

Autores
Anders, Christian; Ziegenhain, Gerolf; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The processes underlying crater formation by energetic nanoparticle impact are investigated using molecular dynamics simulations. Both metallic and van-der-Waals-bonded targets are studied. We find a transition from crater formation by melt flow at small impact energies to an evaporation (gas flow) mechanism at higher energies. The transition occurs gradually at impact energies per atom of a few tens of the cohesive energy of the target. van-der-Waals-bonded solids do not exhibit the melt flow cratering regime, in agreement with the narrow liquid zone in their phase diagram. We find that the size of the target region heated above the critical temperature roughly corresponds to the crater volume. The transition shows up most clearly in the increase of the volume of ejected material relative to the crater volume. Finally, we demonstrate the punching of dislocations below the crater for high-velocity impact into ductile targets, leading to a contribution of plastic flow to the crater volume.
Fil: Anders, Christian. University of Kaiserslautern; Alemania
Fil: Ziegenhain, Gerolf. University of Kaiserslautern; Alemania
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania
Materia
Condensed matter: electrical, magnetic and optical
Condensed matter: structural, mechanical & thermal
Nanoscale science and low-D systems
Astrophysics and astroparticles
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/270707

id CONICETDig_86a4e377f6cda6330bfe869c6ba34d89
oai_identifier_str oai:ri.conicet.gov.ar:11336/270707
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Crater formation by nanoparticle impact: contributions of gas, melt and plastic flowAnders, ChristianZiegenhain, GerolfRuestes, Carlos JavierBringa, Eduardo MarcialUrbassek, Herbert M.Condensed matter: electrical, magnetic and opticalCondensed matter: structural, mechanical & thermalNanoscale science and low-D systemsAstrophysics and astroparticleshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The processes underlying crater formation by energetic nanoparticle impact are investigated using molecular dynamics simulations. Both metallic and van-der-Waals-bonded targets are studied. We find a transition from crater formation by melt flow at small impact energies to an evaporation (gas flow) mechanism at higher energies. The transition occurs gradually at impact energies per atom of a few tens of the cohesive energy of the target. van-der-Waals-bonded solids do not exhibit the melt flow cratering regime, in agreement with the narrow liquid zone in their phase diagram. We find that the size of the target region heated above the critical temperature roughly corresponds to the crater volume. The transition shows up most clearly in the increase of the volume of ejected material relative to the crater volume. Finally, we demonstrate the punching of dislocations below the crater for high-velocity impact into ductile targets, leading to a contribution of plastic flow to the crater volume.Fil: Anders, Christian. University of Kaiserslautern; AlemaniaFil: Ziegenhain, Gerolf. University of Kaiserslautern; AlemaniaFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Urbassek, Herbert M.. University of Kaiserslautern; AlemaniaIOP Publishing2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/270707Anders, Christian; Ziegenhain, Gerolf; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow; IOP Publishing; New Journal of Physics; 14; 8; 8-2012; 1-161367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/14/8/083016info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/14/8/083016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:50Zoai:ri.conicet.gov.ar:11336/270707instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:50.496CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
title Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
spellingShingle Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
Anders, Christian
Condensed matter: electrical, magnetic and optical
Condensed matter: structural, mechanical & thermal
Nanoscale science and low-D systems
Astrophysics and astroparticles
title_short Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
title_full Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
title_fullStr Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
title_full_unstemmed Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
title_sort Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow
dc.creator.none.fl_str_mv Anders, Christian
Ziegenhain, Gerolf
Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author Anders, Christian
author_facet Anders, Christian
Ziegenhain, Gerolf
Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author_role author
author2 Ziegenhain, Gerolf
Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Condensed matter: electrical, magnetic and optical
Condensed matter: structural, mechanical & thermal
Nanoscale science and low-D systems
Astrophysics and astroparticles
topic Condensed matter: electrical, magnetic and optical
Condensed matter: structural, mechanical & thermal
Nanoscale science and low-D systems
Astrophysics and astroparticles
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The processes underlying crater formation by energetic nanoparticle impact are investigated using molecular dynamics simulations. Both metallic and van-der-Waals-bonded targets are studied. We find a transition from crater formation by melt flow at small impact energies to an evaporation (gas flow) mechanism at higher energies. The transition occurs gradually at impact energies per atom of a few tens of the cohesive energy of the target. van-der-Waals-bonded solids do not exhibit the melt flow cratering regime, in agreement with the narrow liquid zone in their phase diagram. We find that the size of the target region heated above the critical temperature roughly corresponds to the crater volume. The transition shows up most clearly in the increase of the volume of ejected material relative to the crater volume. Finally, we demonstrate the punching of dislocations below the crater for high-velocity impact into ductile targets, leading to a contribution of plastic flow to the crater volume.
Fil: Anders, Christian. University of Kaiserslautern; Alemania
Fil: Ziegenhain, Gerolf. University of Kaiserslautern; Alemania
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania
description The processes underlying crater formation by energetic nanoparticle impact are investigated using molecular dynamics simulations. Both metallic and van-der-Waals-bonded targets are studied. We find a transition from crater formation by melt flow at small impact energies to an evaporation (gas flow) mechanism at higher energies. The transition occurs gradually at impact energies per atom of a few tens of the cohesive energy of the target. van-der-Waals-bonded solids do not exhibit the melt flow cratering regime, in agreement with the narrow liquid zone in their phase diagram. We find that the size of the target region heated above the critical temperature roughly corresponds to the crater volume. The transition shows up most clearly in the increase of the volume of ejected material relative to the crater volume. Finally, we demonstrate the punching of dislocations below the crater for high-velocity impact into ductile targets, leading to a contribution of plastic flow to the crater volume.
publishDate 2012
dc.date.none.fl_str_mv 2012-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/270707
Anders, Christian; Ziegenhain, Gerolf; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow; IOP Publishing; New Journal of Physics; 14; 8; 8-2012; 1-16
1367-2630
CONICET Digital
CONICET
url http://hdl.handle.net/11336/270707
identifier_str_mv Anders, Christian; Ziegenhain, Gerolf; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow; IOP Publishing; New Journal of Physics; 14; 8; 8-2012; 1-16
1367-2630
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/14/8/083016
info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/14/8/083016
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613858624274432
score 13.070432