How good are AlphaFold models for docking-based virtual screening?
- Autores
- Scardino, Valeria; Di Filippo, Juan Ignacio; Cavasotto, Claudio Norberto
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A crucial component in structure-based drug discovery is the availability of high-quality three-dimensional structures of the protein target. Whenever experimental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based protein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corresponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking programs and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement strategies might be key to increase the chances of success.
Fil: Scardino, Valeria. Universidad Austral; Argentina
Fil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Universidad Austral; Argentina - Materia
-
ARTIFICIAL INTELLIGENCE
COMPUTATIONAL CHEMISTRY
PROTEIN
PROTEIN FOLDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/229198
Ver los metadatos del registro completo
| id |
CONICETDig_849a117fe3ae61eae09fece13f7ecba7 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/229198 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
How good are AlphaFold models for docking-based virtual screening?Scardino, ValeriaDi Filippo, Juan IgnacioCavasotto, Claudio NorbertoARTIFICIAL INTELLIGENCECOMPUTATIONAL CHEMISTRYPROTEINPROTEIN FOLDINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A crucial component in structure-based drug discovery is the availability of high-quality three-dimensional structures of the protein target. Whenever experimental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based protein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corresponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking programs and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement strategies might be key to increase the chances of success.Fil: Scardino, Valeria. Universidad Austral; ArgentinaFil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Universidad Austral; ArgentinaCell Press2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/229198Scardino, Valeria; Di Filippo, Juan Ignacio; Cavasotto, Claudio Norberto; How good are AlphaFold models for docking-based virtual screening?; Cell Press; iScience; 26; 1; 1-2023; 1-182589-0042CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2589004222021939info:eu-repo/semantics/altIdentifier/doi/10.1016/j.isci.2022.105920info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:01:23Zoai:ri.conicet.gov.ar:11336/229198instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:01:23.962CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
How good are AlphaFold models for docking-based virtual screening? |
| title |
How good are AlphaFold models for docking-based virtual screening? |
| spellingShingle |
How good are AlphaFold models for docking-based virtual screening? Scardino, Valeria ARTIFICIAL INTELLIGENCE COMPUTATIONAL CHEMISTRY PROTEIN PROTEIN FOLDING |
| title_short |
How good are AlphaFold models for docking-based virtual screening? |
| title_full |
How good are AlphaFold models for docking-based virtual screening? |
| title_fullStr |
How good are AlphaFold models for docking-based virtual screening? |
| title_full_unstemmed |
How good are AlphaFold models for docking-based virtual screening? |
| title_sort |
How good are AlphaFold models for docking-based virtual screening? |
| dc.creator.none.fl_str_mv |
Scardino, Valeria Di Filippo, Juan Ignacio Cavasotto, Claudio Norberto |
| author |
Scardino, Valeria |
| author_facet |
Scardino, Valeria Di Filippo, Juan Ignacio Cavasotto, Claudio Norberto |
| author_role |
author |
| author2 |
Di Filippo, Juan Ignacio Cavasotto, Claudio Norberto |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ARTIFICIAL INTELLIGENCE COMPUTATIONAL CHEMISTRY PROTEIN PROTEIN FOLDING |
| topic |
ARTIFICIAL INTELLIGENCE COMPUTATIONAL CHEMISTRY PROTEIN PROTEIN FOLDING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A crucial component in structure-based drug discovery is the availability of high-quality three-dimensional structures of the protein target. Whenever experimental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based protein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corresponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking programs and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement strategies might be key to increase the chances of success. Fil: Scardino, Valeria. Universidad Austral; Argentina Fil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Universidad Austral; Argentina |
| description |
A crucial component in structure-based drug discovery is the availability of high-quality three-dimensional structures of the protein target. Whenever experimental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based protein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corresponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking programs and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement strategies might be key to increase the chances of success. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/229198 Scardino, Valeria; Di Filippo, Juan Ignacio; Cavasotto, Claudio Norberto; How good are AlphaFold models for docking-based virtual screening?; Cell Press; iScience; 26; 1; 1-2023; 1-18 2589-0042 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/229198 |
| identifier_str_mv |
Scardino, Valeria; Di Filippo, Juan Ignacio; Cavasotto, Claudio Norberto; How good are AlphaFold models for docking-based virtual screening?; Cell Press; iScience; 26; 1; 1-2023; 1-18 2589-0042 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2589004222021939 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.isci.2022.105920 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Cell Press |
| publisher.none.fl_str_mv |
Cell Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782346104143872 |
| score |
12.982451 |