Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration
- Autores
- Quintero, Mariano Horacio; Sacanell, Joaquin Gonzalo; Ghivelder, L.; Gomes, A. M.; Leyva, A. G.; Parisi, F.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a study of the magnetocaloric effect in La5/8-y Pry Ca3/8 MnO3 (y=0.3) and Pr0.5 Ca0.09Sr0.41 MnO3 manganites. The low temperature state of both systems is the result of a competition between the antiferromagnetic and ferromagnetic phases. The samples display magnetocaloric effect evidenced in an adiabatic temperature change during a metamagnetic transition from an antiferromagnetic to a ferromagnetic phase. As additional features, La5/8-y Pry Ca3/8 MnO3 exhibits phase separation characterized by the coexistence of antiferromagnetic and ferromagnetic phases and Pr0.5 Ca0.09Sr0.41 MnO3 displays inverse magnetocaloric effect in which temperature decreases while applying an external magnetic field. In both cases, a significant part of the magnetocaloric effect appears from nonreversible processes. As the traditional thermodynamic description of the effect usually deals with reversible transitions, we developed an alternative way to calculate the adiabatic temperature change in terms of the change of the relative ferromagnetic fraction induced by magnetic field. To evaluate our model, we performed direct measurement of the sample's adiabatic temperature change by means of a differential thermal analysis. An excellent agreement has been obtained between experimental and calculated data. These results show that metamagnetic transition in manganites play an important role in the study of magnetic refrigeration.
Fil: Quintero, Mariano Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: Sacanell, Joaquin Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
Fil: Ghivelder, L.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Gomes, A. M.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Leyva, A. G.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: Parisi, F.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina - Materia
-
MAGNETOCALORIC EFFECT
MANGANITE
METAMAGNETIC TRANSITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/190887
Ver los metadatos del registro completo
id |
CONICETDig_83ff71534e2e58a88a2255e41a491bb5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/190887 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigerationQuintero, Mariano HoracioSacanell, Joaquin GonzaloGhivelder, L.Gomes, A. M.Leyva, A. G.Parisi, F.MAGNETOCALORIC EFFECTMANGANITEMETAMAGNETIC TRANSITIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a study of the magnetocaloric effect in La5/8-y Pry Ca3/8 MnO3 (y=0.3) and Pr0.5 Ca0.09Sr0.41 MnO3 manganites. The low temperature state of both systems is the result of a competition between the antiferromagnetic and ferromagnetic phases. The samples display magnetocaloric effect evidenced in an adiabatic temperature change during a metamagnetic transition from an antiferromagnetic to a ferromagnetic phase. As additional features, La5/8-y Pry Ca3/8 MnO3 exhibits phase separation characterized by the coexistence of antiferromagnetic and ferromagnetic phases and Pr0.5 Ca0.09Sr0.41 MnO3 displays inverse magnetocaloric effect in which temperature decreases while applying an external magnetic field. In both cases, a significant part of the magnetocaloric effect appears from nonreversible processes. As the traditional thermodynamic description of the effect usually deals with reversible transitions, we developed an alternative way to calculate the adiabatic temperature change in terms of the change of the relative ferromagnetic fraction induced by magnetic field. To evaluate our model, we performed direct measurement of the sample's adiabatic temperature change by means of a differential thermal analysis. An excellent agreement has been obtained between experimental and calculated data. These results show that metamagnetic transition in manganites play an important role in the study of magnetic refrigeration.Fil: Quintero, Mariano Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Sacanell, Joaquin Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Ghivelder, L.. Universidade Federal do Rio de Janeiro; BrasilFil: Gomes, A. M.. Universidade Federal do Rio de Janeiro; BrasilFil: Leyva, A. G.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Parisi, F.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaAmerican Institute of Physics2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190887Quintero, Mariano Horacio; Sacanell, Joaquin Gonzalo; Ghivelder, L.; Gomes, A. M.; Leyva, A. G.; et al.; Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration; American Institute of Physics; Applied Physics Letters; 97; 12; 9-2010; 1-30003-6951CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3491175info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3491175info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:40Zoai:ri.conicet.gov.ar:11336/190887instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:41.237CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration |
title |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration |
spellingShingle |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration Quintero, Mariano Horacio MAGNETOCALORIC EFFECT MANGANITE METAMAGNETIC TRANSITION |
title_short |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration |
title_full |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration |
title_fullStr |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration |
title_full_unstemmed |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration |
title_sort |
Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration |
dc.creator.none.fl_str_mv |
Quintero, Mariano Horacio Sacanell, Joaquin Gonzalo Ghivelder, L. Gomes, A. M. Leyva, A. G. Parisi, F. |
author |
Quintero, Mariano Horacio |
author_facet |
Quintero, Mariano Horacio Sacanell, Joaquin Gonzalo Ghivelder, L. Gomes, A. M. Leyva, A. G. Parisi, F. |
author_role |
author |
author2 |
Sacanell, Joaquin Gonzalo Ghivelder, L. Gomes, A. M. Leyva, A. G. Parisi, F. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
MAGNETOCALORIC EFFECT MANGANITE METAMAGNETIC TRANSITION |
topic |
MAGNETOCALORIC EFFECT MANGANITE METAMAGNETIC TRANSITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a study of the magnetocaloric effect in La5/8-y Pry Ca3/8 MnO3 (y=0.3) and Pr0.5 Ca0.09Sr0.41 MnO3 manganites. The low temperature state of both systems is the result of a competition between the antiferromagnetic and ferromagnetic phases. The samples display magnetocaloric effect evidenced in an adiabatic temperature change during a metamagnetic transition from an antiferromagnetic to a ferromagnetic phase. As additional features, La5/8-y Pry Ca3/8 MnO3 exhibits phase separation characterized by the coexistence of antiferromagnetic and ferromagnetic phases and Pr0.5 Ca0.09Sr0.41 MnO3 displays inverse magnetocaloric effect in which temperature decreases while applying an external magnetic field. In both cases, a significant part of the magnetocaloric effect appears from nonreversible processes. As the traditional thermodynamic description of the effect usually deals with reversible transitions, we developed an alternative way to calculate the adiabatic temperature change in terms of the change of the relative ferromagnetic fraction induced by magnetic field. To evaluate our model, we performed direct measurement of the sample's adiabatic temperature change by means of a differential thermal analysis. An excellent agreement has been obtained between experimental and calculated data. These results show that metamagnetic transition in manganites play an important role in the study of magnetic refrigeration. Fil: Quintero, Mariano Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina Fil: Sacanell, Joaquin Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina Fil: Ghivelder, L.. Universidade Federal do Rio de Janeiro; Brasil Fil: Gomes, A. M.. Universidade Federal do Rio de Janeiro; Brasil Fil: Leyva, A. G.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina Fil: Parisi, F.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina |
description |
We present a study of the magnetocaloric effect in La5/8-y Pry Ca3/8 MnO3 (y=0.3) and Pr0.5 Ca0.09Sr0.41 MnO3 manganites. The low temperature state of both systems is the result of a competition between the antiferromagnetic and ferromagnetic phases. The samples display magnetocaloric effect evidenced in an adiabatic temperature change during a metamagnetic transition from an antiferromagnetic to a ferromagnetic phase. As additional features, La5/8-y Pry Ca3/8 MnO3 exhibits phase separation characterized by the coexistence of antiferromagnetic and ferromagnetic phases and Pr0.5 Ca0.09Sr0.41 MnO3 displays inverse magnetocaloric effect in which temperature decreases while applying an external magnetic field. In both cases, a significant part of the magnetocaloric effect appears from nonreversible processes. As the traditional thermodynamic description of the effect usually deals with reversible transitions, we developed an alternative way to calculate the adiabatic temperature change in terms of the change of the relative ferromagnetic fraction induced by magnetic field. To evaluate our model, we performed direct measurement of the sample's adiabatic temperature change by means of a differential thermal analysis. An excellent agreement has been obtained between experimental and calculated data. These results show that metamagnetic transition in manganites play an important role in the study of magnetic refrigeration. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/190887 Quintero, Mariano Horacio; Sacanell, Joaquin Gonzalo; Ghivelder, L.; Gomes, A. M.; Leyva, A. G.; et al.; Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration; American Institute of Physics; Applied Physics Letters; 97; 12; 9-2010; 1-3 0003-6951 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/190887 |
identifier_str_mv |
Quintero, Mariano Horacio; Sacanell, Joaquin Gonzalo; Ghivelder, L.; Gomes, A. M.; Leyva, A. G.; et al.; Magnetocaloric effect in manganites: Metamagnetic transitions for magnetic refrigeration; American Institute of Physics; Applied Physics Letters; 97; 12; 9-2010; 1-3 0003-6951 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3491175 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3491175 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613677533102080 |
score |
13.070432 |