Discrete duality for 3-valued Lukasiewicz-Moisil algebras

Autores
Pelaitay, Gustavo Andrés
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In 2011, Düntsch and Orlowska obtained a discrete duality for regular double Stone algebras. On the other hand, it is well known that regular double Stone algebras are polinominally equivalent to 3-valued Lukasiewicz-Moisil algebras (or LM3-algebras). In [R. Cignoli, Injective De Morgan and Kleene algebra, Proc. Amer. Math. Soc. 47 (1975) 269-278], LM3-algebras are considered as a Kleene algebras (L,∨,∧,∼, 0, 1) endowed with a unary operation : L → L, satisfying the properties: a∨ ∼ a = 1, ∼ a ∧ a = a∧ ∼ a and a∨b ≤(a ∨ b). Motivated by this result, in this paper, we determine another discrete duality for LM3-algebras, extending the discrete duality to De Morgan algebras described in [W. Dzik, E. Orlowska and C. van Alten, Relational representation theorems for general lattices with negations, in Relations and Kleene Algebra in Computer Science, Lecture Notes in Computer Science, Vol. 4136 (Springer, Berlin, 2006), pp. 162-176].
Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes; Argentina
Materia
3 -VALUED LUKASIEWICZ-MOISIL ALGEBRAS
DE MORGAN ALGEBRAS
DISCRETE DUALITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97231

id CONICETDig_83aa4c4415ca057abcda338d3364ede7
oai_identifier_str oai:ri.conicet.gov.ar:11336/97231
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Discrete duality for 3-valued Lukasiewicz-Moisil algebrasPelaitay, Gustavo Andrés3 -VALUED LUKASIEWICZ-MOISIL ALGEBRASDE MORGAN ALGEBRASDISCRETE DUALITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In 2011, Düntsch and Orlowska obtained a discrete duality for regular double Stone algebras. On the other hand, it is well known that regular double Stone algebras are polinominally equivalent to 3-valued Lukasiewicz-Moisil algebras (or LM3-algebras). In [R. Cignoli, Injective De Morgan and Kleene algebra, Proc. Amer. Math. Soc. 47 (1975) 269-278], LM3-algebras are considered as a Kleene algebras (L,∨,∧,∼, 0, 1) endowed with a unary operation : L → L, satisfying the properties: a∨ ∼ a = 1, ∼ a ∧ a = a∧ ∼ a and a∨b ≤(a ∨ b). Motivated by this result, in this paper, we determine another discrete duality for LM3-algebras, extending the discrete duality to De Morgan algebras described in [W. Dzik, E. Orlowska and C. van Alten, Relational representation theorems for general lattices with negations, in Relations and Kleene Algebra in Computer Science, Lecture Notes in Computer Science, Vol. 4136 (Springer, Berlin, 2006), pp. 162-176].Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes; ArgentinaWorld Scientific Publishing2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97231Pelaitay, Gustavo Andrés; Discrete duality for 3-valued Lukasiewicz-Moisil algebras; World Scientific Publishing; Asian-European Journal of Mathematics; 10; 1; 3-2017; 1-61793-7183CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S1793557117500036info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1793557117500036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:03Zoai:ri.conicet.gov.ar:11336/97231instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:03.916CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Discrete duality for 3-valued Lukasiewicz-Moisil algebras
title Discrete duality for 3-valued Lukasiewicz-Moisil algebras
spellingShingle Discrete duality for 3-valued Lukasiewicz-Moisil algebras
Pelaitay, Gustavo Andrés
3 -VALUED LUKASIEWICZ-MOISIL ALGEBRAS
DE MORGAN ALGEBRAS
DISCRETE DUALITY
title_short Discrete duality for 3-valued Lukasiewicz-Moisil algebras
title_full Discrete duality for 3-valued Lukasiewicz-Moisil algebras
title_fullStr Discrete duality for 3-valued Lukasiewicz-Moisil algebras
title_full_unstemmed Discrete duality for 3-valued Lukasiewicz-Moisil algebras
title_sort Discrete duality for 3-valued Lukasiewicz-Moisil algebras
dc.creator.none.fl_str_mv Pelaitay, Gustavo Andrés
author Pelaitay, Gustavo Andrés
author_facet Pelaitay, Gustavo Andrés
author_role author
dc.subject.none.fl_str_mv 3 -VALUED LUKASIEWICZ-MOISIL ALGEBRAS
DE MORGAN ALGEBRAS
DISCRETE DUALITY
topic 3 -VALUED LUKASIEWICZ-MOISIL ALGEBRAS
DE MORGAN ALGEBRAS
DISCRETE DUALITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In 2011, Düntsch and Orlowska obtained a discrete duality for regular double Stone algebras. On the other hand, it is well known that regular double Stone algebras are polinominally equivalent to 3-valued Lukasiewicz-Moisil algebras (or LM3-algebras). In [R. Cignoli, Injective De Morgan and Kleene algebra, Proc. Amer. Math. Soc. 47 (1975) 269-278], LM3-algebras are considered as a Kleene algebras (L,∨,∧,∼, 0, 1) endowed with a unary operation : L → L, satisfying the properties: a∨ ∼ a = 1, ∼ a ∧ a = a∧ ∼ a and a∨b ≤(a ∨ b). Motivated by this result, in this paper, we determine another discrete duality for LM3-algebras, extending the discrete duality to De Morgan algebras described in [W. Dzik, E. Orlowska and C. van Alten, Relational representation theorems for general lattices with negations, in Relations and Kleene Algebra in Computer Science, Lecture Notes in Computer Science, Vol. 4136 (Springer, Berlin, 2006), pp. 162-176].
Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes; Argentina
description In 2011, Düntsch and Orlowska obtained a discrete duality for regular double Stone algebras. On the other hand, it is well known that regular double Stone algebras are polinominally equivalent to 3-valued Lukasiewicz-Moisil algebras (or LM3-algebras). In [R. Cignoli, Injective De Morgan and Kleene algebra, Proc. Amer. Math. Soc. 47 (1975) 269-278], LM3-algebras are considered as a Kleene algebras (L,∨,∧,∼, 0, 1) endowed with a unary operation : L → L, satisfying the properties: a∨ ∼ a = 1, ∼ a ∧ a = a∧ ∼ a and a∨b ≤(a ∨ b). Motivated by this result, in this paper, we determine another discrete duality for LM3-algebras, extending the discrete duality to De Morgan algebras described in [W. Dzik, E. Orlowska and C. van Alten, Relational representation theorems for general lattices with negations, in Relations and Kleene Algebra in Computer Science, Lecture Notes in Computer Science, Vol. 4136 (Springer, Berlin, 2006), pp. 162-176].
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97231
Pelaitay, Gustavo Andrés; Discrete duality for 3-valued Lukasiewicz-Moisil algebras; World Scientific Publishing; Asian-European Journal of Mathematics; 10; 1; 3-2017; 1-6
1793-7183
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97231
identifier_str_mv Pelaitay, Gustavo Andrés; Discrete duality for 3-valued Lukasiewicz-Moisil algebras; World Scientific Publishing; Asian-European Journal of Mathematics; 10; 1; 3-2017; 1-6
1793-7183
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S1793557117500036
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1793557117500036
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific Publishing
publisher.none.fl_str_mv World Scientific Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613520520380416
score 13.070432