Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)

Autores
Scarano, Alejo Carlos; Vera, Bárbara Soledad
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Shape and age variation in dentition of Paleogene extinct native South American ungulates (Notoungulata) has been traditionally described using qualitative and quantitative approaches, and has played a controversial role in the systematics of several groups. Such is the case of the Notopithecidae, a group of notoungulates with low‐crowned teeth, known from the middle Eocene of Patagonia (Argentina). In this group, as well as in other contemporary families, extreme morphological changes associated to increasing dental wear were originally assumed to represent taxonomic differences; thus, dozens of species were erected, clearly reflecting the difficulty of defining discrete characters. In this contribution, a total of 89 upper molars and 91 lower molars were analyzed distributed in two factors, wear and species; three species of notopithecids were considered as study case, Notopithecus adapinus, Antepithecus brachystephanus, and Transpithecus obtentus, based on the large and well‐identified sample of upper and lower molars for each species. We have coupled geometric morphometric analyses with traditional comparative methods to get a better understanding and interpretation of both the changes in tooth shape contour and the link between shape and ontogeny. In addition, we evaluate the utility of this approach to identify which changes are strictly wear‐related and also test the qualitative characteristics used for diagnosing and differentiating notopithecid species. Our study yielded consistent results when applying independent geometric morphometric analyses on complex structures such as brachydont molar teeth. The landmark data is highly congruent with alternative sources of evidence, such as morphological studies using discrete characters. In notopithecid species, wear is the main factor affecting molar shape, followed by species (in lower molars) and allometry; in addition, lower teeth morphology is more definitive in separating species than upper molars, a fact that entails a key point for systematic studies of Paleogene brachydont notoungulates.
Fil: Scarano, Alejo Carlos. Universidad Nacional de Avellaneda; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Departamento Científico de Paleontología de Vertebrados; Argentina
Fil: Vera, Bárbara Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Materia
Brachydont
Cheek Teeth
Middle Eocene
Wear
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42192

id CONICETDig_830d7fab380f3ec9ee27e44407ad115c
oai_identifier_str oai:ri.conicet.gov.ar:11336/42192
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)Scarano, Alejo CarlosVera, Bárbara SoledadBrachydontCheek TeethMiddle EoceneWearhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Shape and age variation in dentition of Paleogene extinct native South American ungulates (Notoungulata) has been traditionally described using qualitative and quantitative approaches, and has played a controversial role in the systematics of several groups. Such is the case of the Notopithecidae, a group of notoungulates with low‐crowned teeth, known from the middle Eocene of Patagonia (Argentina). In this group, as well as in other contemporary families, extreme morphological changes associated to increasing dental wear were originally assumed to represent taxonomic differences; thus, dozens of species were erected, clearly reflecting the difficulty of defining discrete characters. In this contribution, a total of 89 upper molars and 91 lower molars were analyzed distributed in two factors, wear and species; three species of notopithecids were considered as study case, Notopithecus adapinus, Antepithecus brachystephanus, and Transpithecus obtentus, based on the large and well‐identified sample of upper and lower molars for each species. We have coupled geometric morphometric analyses with traditional comparative methods to get a better understanding and interpretation of both the changes in tooth shape contour and the link between shape and ontogeny. In addition, we evaluate the utility of this approach to identify which changes are strictly wear‐related and also test the qualitative characteristics used for diagnosing and differentiating notopithecid species. Our study yielded consistent results when applying independent geometric morphometric analyses on complex structures such as brachydont molar teeth. The landmark data is highly congruent with alternative sources of evidence, such as morphological studies using discrete characters. In notopithecid species, wear is the main factor affecting molar shape, followed by species (in lower molars) and allometry; in addition, lower teeth morphology is more definitive in separating species than upper molars, a fact that entails a key point for systematic studies of Paleogene brachydont notoungulates.Fil: Scarano, Alejo Carlos. Universidad Nacional de Avellaneda; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Departamento Científico de Paleontología de Vertebrados; ArgentinaFil: Vera, Bárbara Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaWiley-liss, Div John Wiley & Sons Inc2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42192Scarano, Alejo Carlos; Vera, Bárbara Soledad; Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia); Wiley-liss, Div John Wiley & Sons Inc; Journal of Morphology; 279; 2; 10-2017; 216-2270362-2525CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/jmor.20766info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jmor.20766info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:13Zoai:ri.conicet.gov.ar:11336/42192instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:14.173CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)
title Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)
spellingShingle Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)
Scarano, Alejo Carlos
Brachydont
Cheek Teeth
Middle Eocene
Wear
title_short Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)
title_full Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)
title_fullStr Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)
title_full_unstemmed Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)
title_sort Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)
dc.creator.none.fl_str_mv Scarano, Alejo Carlos
Vera, Bárbara Soledad
author Scarano, Alejo Carlos
author_facet Scarano, Alejo Carlos
Vera, Bárbara Soledad
author_role author
author2 Vera, Bárbara Soledad
author2_role author
dc.subject.none.fl_str_mv Brachydont
Cheek Teeth
Middle Eocene
Wear
topic Brachydont
Cheek Teeth
Middle Eocene
Wear
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Shape and age variation in dentition of Paleogene extinct native South American ungulates (Notoungulata) has been traditionally described using qualitative and quantitative approaches, and has played a controversial role in the systematics of several groups. Such is the case of the Notopithecidae, a group of notoungulates with low‐crowned teeth, known from the middle Eocene of Patagonia (Argentina). In this group, as well as in other contemporary families, extreme morphological changes associated to increasing dental wear were originally assumed to represent taxonomic differences; thus, dozens of species were erected, clearly reflecting the difficulty of defining discrete characters. In this contribution, a total of 89 upper molars and 91 lower molars were analyzed distributed in two factors, wear and species; three species of notopithecids were considered as study case, Notopithecus adapinus, Antepithecus brachystephanus, and Transpithecus obtentus, based on the large and well‐identified sample of upper and lower molars for each species. We have coupled geometric morphometric analyses with traditional comparative methods to get a better understanding and interpretation of both the changes in tooth shape contour and the link between shape and ontogeny. In addition, we evaluate the utility of this approach to identify which changes are strictly wear‐related and also test the qualitative characteristics used for diagnosing and differentiating notopithecid species. Our study yielded consistent results when applying independent geometric morphometric analyses on complex structures such as brachydont molar teeth. The landmark data is highly congruent with alternative sources of evidence, such as morphological studies using discrete characters. In notopithecid species, wear is the main factor affecting molar shape, followed by species (in lower molars) and allometry; in addition, lower teeth morphology is more definitive in separating species than upper molars, a fact that entails a key point for systematic studies of Paleogene brachydont notoungulates.
Fil: Scarano, Alejo Carlos. Universidad Nacional de Avellaneda; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Departamento Científico de Paleontología de Vertebrados; Argentina
Fil: Vera, Bárbara Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
description Shape and age variation in dentition of Paleogene extinct native South American ungulates (Notoungulata) has been traditionally described using qualitative and quantitative approaches, and has played a controversial role in the systematics of several groups. Such is the case of the Notopithecidae, a group of notoungulates with low‐crowned teeth, known from the middle Eocene of Patagonia (Argentina). In this group, as well as in other contemporary families, extreme morphological changes associated to increasing dental wear were originally assumed to represent taxonomic differences; thus, dozens of species were erected, clearly reflecting the difficulty of defining discrete characters. In this contribution, a total of 89 upper molars and 91 lower molars were analyzed distributed in two factors, wear and species; three species of notopithecids were considered as study case, Notopithecus adapinus, Antepithecus brachystephanus, and Transpithecus obtentus, based on the large and well‐identified sample of upper and lower molars for each species. We have coupled geometric morphometric analyses with traditional comparative methods to get a better understanding and interpretation of both the changes in tooth shape contour and the link between shape and ontogeny. In addition, we evaluate the utility of this approach to identify which changes are strictly wear‐related and also test the qualitative characteristics used for diagnosing and differentiating notopithecid species. Our study yielded consistent results when applying independent geometric morphometric analyses on complex structures such as brachydont molar teeth. The landmark data is highly congruent with alternative sources of evidence, such as morphological studies using discrete characters. In notopithecid species, wear is the main factor affecting molar shape, followed by species (in lower molars) and allometry; in addition, lower teeth morphology is more definitive in separating species than upper molars, a fact that entails a key point for systematic studies of Paleogene brachydont notoungulates.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42192
Scarano, Alejo Carlos; Vera, Bárbara Soledad; Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia); Wiley-liss, Div John Wiley & Sons Inc; Journal of Morphology; 279; 2; 10-2017; 216-227
0362-2525
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42192
identifier_str_mv Scarano, Alejo Carlos; Vera, Bárbara Soledad; Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia); Wiley-liss, Div John Wiley & Sons Inc; Journal of Morphology; 279; 2; 10-2017; 216-227
0362-2525
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/jmor.20766
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jmor.20766
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley-liss, Div John Wiley & Sons Inc
publisher.none.fl_str_mv Wiley-liss, Div John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613057764917248
score 13.070432