Solving an open problem about the G-Drazin partial order
- Autores
- Ferreyra, David Eduardo; Lattanzi, Marina Beatriz; Levis, Fabián Eduardo; Thome, Néstor
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- G-Drazin inverses and the G-Drazin partial order for square matrices have been both recently introduced by Wang and Liu. They proved the following implication: If A is below B under the G-Drazin partial order, then any G-Drazin inverse of B is also a G-Drazin inverse of A. However, this necessary condition could not be stated as a characterization and the validity (or not) of the converse implication was posed as an open problem. In this paper, this problem is completely solved. It is obtained that the converse, in general, is false, and a form to construct counterexamples is provided. It is also proved that the converse holds under an additional condition (which is also necessary) as well as for some special cases of matrices.
Fil: Ferreyra, David Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Lattanzi, Marina Beatriz. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matemática; Argentina
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Thome, Néstor. Universidad Politécnica de Valencia; España - Materia
-
G-DRAZIN INVERSE
G-DRAZIN PARTIAL ORDER
MINUS PARTIAL ORDER
SPACE PRE-ORDER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/132022
Ver los metadatos del registro completo
id |
CONICETDig_822b0884b2f4782f8fa7db88a942bbcd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/132022 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solving an open problem about the G-Drazin partial orderFerreyra, David EduardoLattanzi, Marina BeatrizLevis, Fabián EduardoThome, NéstorG-DRAZIN INVERSEG-DRAZIN PARTIAL ORDERMINUS PARTIAL ORDERSPACE PRE-ORDERhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1G-Drazin inverses and the G-Drazin partial order for square matrices have been both recently introduced by Wang and Liu. They proved the following implication: If A is below B under the G-Drazin partial order, then any G-Drazin inverse of B is also a G-Drazin inverse of A. However, this necessary condition could not be stated as a characterization and the validity (or not) of the converse implication was posed as an open problem. In this paper, this problem is completely solved. It is obtained that the converse, in general, is false, and a form to construct counterexamples is provided. It is also proved that the converse holds under an additional condition (which is also necessary) as well as for some special cases of matrices.Fil: Ferreyra, David Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Lattanzi, Marina Beatriz. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matemática; ArgentinaFil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Thome, Néstor. Universidad Politécnica de Valencia; EspañaInternational Linear Algebra Society2020-02-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132022Ferreyra, David Eduardo; Lattanzi, Marina Beatriz; Levis, Fabián Eduardo; Thome, Néstor; Solving an open problem about the G-Drazin partial order; International Linear Algebra Society; Electronic Journal Of Linear Algebra; 36; 1; 8-2-2020; 55-661081-3810CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.13001/ela.2020.4965info:eu-repo/semantics/altIdentifier/url/https://journals.uwyo.edu/index.php/ela/article/view/4965info:eu-repo/semantics/altIdentifier/url/https://riunet.upv.es/handle/10251/161871info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:29Zoai:ri.conicet.gov.ar:11336/132022instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:30.111CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solving an open problem about the G-Drazin partial order |
title |
Solving an open problem about the G-Drazin partial order |
spellingShingle |
Solving an open problem about the G-Drazin partial order Ferreyra, David Eduardo G-DRAZIN INVERSE G-DRAZIN PARTIAL ORDER MINUS PARTIAL ORDER SPACE PRE-ORDER |
title_short |
Solving an open problem about the G-Drazin partial order |
title_full |
Solving an open problem about the G-Drazin partial order |
title_fullStr |
Solving an open problem about the G-Drazin partial order |
title_full_unstemmed |
Solving an open problem about the G-Drazin partial order |
title_sort |
Solving an open problem about the G-Drazin partial order |
dc.creator.none.fl_str_mv |
Ferreyra, David Eduardo Lattanzi, Marina Beatriz Levis, Fabián Eduardo Thome, Néstor |
author |
Ferreyra, David Eduardo |
author_facet |
Ferreyra, David Eduardo Lattanzi, Marina Beatriz Levis, Fabián Eduardo Thome, Néstor |
author_role |
author |
author2 |
Lattanzi, Marina Beatriz Levis, Fabián Eduardo Thome, Néstor |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
G-DRAZIN INVERSE G-DRAZIN PARTIAL ORDER MINUS PARTIAL ORDER SPACE PRE-ORDER |
topic |
G-DRAZIN INVERSE G-DRAZIN PARTIAL ORDER MINUS PARTIAL ORDER SPACE PRE-ORDER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
G-Drazin inverses and the G-Drazin partial order for square matrices have been both recently introduced by Wang and Liu. They proved the following implication: If A is below B under the G-Drazin partial order, then any G-Drazin inverse of B is also a G-Drazin inverse of A. However, this necessary condition could not be stated as a characterization and the validity (or not) of the converse implication was posed as an open problem. In this paper, this problem is completely solved. It is obtained that the converse, in general, is false, and a form to construct counterexamples is provided. It is also proved that the converse holds under an additional condition (which is also necessary) as well as for some special cases of matrices. Fil: Ferreyra, David Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Lattanzi, Marina Beatriz. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matemática; Argentina Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Thome, Néstor. Universidad Politécnica de Valencia; España |
description |
G-Drazin inverses and the G-Drazin partial order for square matrices have been both recently introduced by Wang and Liu. They proved the following implication: If A is below B under the G-Drazin partial order, then any G-Drazin inverse of B is also a G-Drazin inverse of A. However, this necessary condition could not be stated as a characterization and the validity (or not) of the converse implication was posed as an open problem. In this paper, this problem is completely solved. It is obtained that the converse, in general, is false, and a form to construct counterexamples is provided. It is also proved that the converse holds under an additional condition (which is also necessary) as well as for some special cases of matrices. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/132022 Ferreyra, David Eduardo; Lattanzi, Marina Beatriz; Levis, Fabián Eduardo; Thome, Néstor; Solving an open problem about the G-Drazin partial order; International Linear Algebra Society; Electronic Journal Of Linear Algebra; 36; 1; 8-2-2020; 55-66 1081-3810 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/132022 |
identifier_str_mv |
Ferreyra, David Eduardo; Lattanzi, Marina Beatriz; Levis, Fabián Eduardo; Thome, Néstor; Solving an open problem about the G-Drazin partial order; International Linear Algebra Society; Electronic Journal Of Linear Algebra; 36; 1; 8-2-2020; 55-66 1081-3810 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.13001/ela.2020.4965 info:eu-repo/semantics/altIdentifier/url/https://journals.uwyo.edu/index.php/ela/article/view/4965 info:eu-repo/semantics/altIdentifier/url/https://riunet.upv.es/handle/10251/161871 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Linear Algebra Society |
publisher.none.fl_str_mv |
International Linear Algebra Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082624911572992 |
score |
13.22299 |