The ontogeny of plant indirect defenses

Autores
Quintero, Carolina; Barton, Kasey E.; Boege, Karina
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Plants frequently attract natural enemies of their herbivores, resulting in a reduction in tissue damage and often in enhanced plant fitness. While such indirect defenses can dramatically change as plants develop, only recently have ecologists begun to explore such changes and evaluate their role in mediating plant-herbivore-natural enemy interactions. Here we review the literature documenting ontogenetic patterns in plant rewards (i.e. extrafloral nectaries (EFNs), food bodies (FBs) and domatia) and volatile organic compounds (VOCs), and identify links between ontogenetic patterns in such traits and the attraction of natural enemies (ants). In the case of reward traits we concentrate in ant-plant studies, which are the most numerous. We report that all indirect defensive traits commonly vary with plant age but ontogenetic trajectories differ among them. Myrmecophytic species, which provide both food and shelter to their defenders, do not produce rewarding traits until a minimum size is reached. Then, a pronounced increase in the abundance of food rewards and domatia often occurs as plants develop, which explains the temporal succession or colony size increase of mutualistic ant species and, in some cases, leads to a reduction in herbivore damage and enhanced fitness as plants age. In contrast, ontogenetic patterns were less consistent in plant species that rely on VOC emissions to attract natural enemies or those that provide only food rewards (EFNs) but not nesting sites to their associated ants, showing an overall decline or lack of trend with plant development, respectively. Future research should focus on uncovering: (i) the costs and mechanisms underlying ontogenetic variation in indirect defenses, (ii) the relative importance of environmental and genetic components shaping these ontogenetic trajectories, and (iii) the consequences of these ontogenetic trajectories on plant fitness. Advances in this area will shed light on the context dependency of bottom-up and top-down controls of herbivore populations and on how natural selection actually shapes the ontogenetic trajectories of these traits.
Fil: Quintero, Carolina. State University Of Colorado-boulder; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Barton, Kasey E.. University Of Hawaii At Manoa; Estados Unidos
Fil: Boege, Karina. Universidad Nacional Autónoma de México; México
Materia
Plant Rewards
Extrafloral Nectaries
Domatia
Volatile Organic Compounds
Ontogeny
Tritrophic Interactions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6651

id CONICETDig_81f337bf293a353bdb98568c4646b15e
oai_identifier_str oai:ri.conicet.gov.ar:11336/6651
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The ontogeny of plant indirect defensesQuintero, CarolinaBarton, Kasey E.Boege, KarinaPlant RewardsExtrafloral NectariesDomatiaVolatile Organic CompoundsOntogenyTritrophic Interactionshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Plants frequently attract natural enemies of their herbivores, resulting in a reduction in tissue damage and often in enhanced plant fitness. While such indirect defenses can dramatically change as plants develop, only recently have ecologists begun to explore such changes and evaluate their role in mediating plant-herbivore-natural enemy interactions. Here we review the literature documenting ontogenetic patterns in plant rewards (i.e. extrafloral nectaries (EFNs), food bodies (FBs) and domatia) and volatile organic compounds (VOCs), and identify links between ontogenetic patterns in such traits and the attraction of natural enemies (ants). In the case of reward traits we concentrate in ant-plant studies, which are the most numerous. We report that all indirect defensive traits commonly vary with plant age but ontogenetic trajectories differ among them. Myrmecophytic species, which provide both food and shelter to their defenders, do not produce rewarding traits until a minimum size is reached. Then, a pronounced increase in the abundance of food rewards and domatia often occurs as plants develop, which explains the temporal succession or colony size increase of mutualistic ant species and, in some cases, leads to a reduction in herbivore damage and enhanced fitness as plants age. In contrast, ontogenetic patterns were less consistent in plant species that rely on VOC emissions to attract natural enemies or those that provide only food rewards (EFNs) but not nesting sites to their associated ants, showing an overall decline or lack of trend with plant development, respectively. Future research should focus on uncovering: (i) the costs and mechanisms underlying ontogenetic variation in indirect defenses, (ii) the relative importance of environmental and genetic components shaping these ontogenetic trajectories, and (iii) the consequences of these ontogenetic trajectories on plant fitness. Advances in this area will shed light on the context dependency of bottom-up and top-down controls of herbivore populations and on how natural selection actually shapes the ontogenetic trajectories of these traits.Fil: Quintero, Carolina. State University Of Colorado-boulder; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Barton, Kasey E.. University Of Hawaii At Manoa; Estados UnidosFil: Boege, Karina. Universidad Nacional Autónoma de México; MéxicoElsevier2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6651Quintero, Carolina; Barton, Kasey E.; Boege, Karina; The ontogeny of plant indirect defenses; Elsevier; Perspectives in Plant Ecology Evolution and Systematics; 15; 5; 9-2013; 245-2541433-8319enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1433831913000607info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ppees.2013.08.003info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:30:46Zoai:ri.conicet.gov.ar:11336/6651instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:30:46.505CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The ontogeny of plant indirect defenses
title The ontogeny of plant indirect defenses
spellingShingle The ontogeny of plant indirect defenses
Quintero, Carolina
Plant Rewards
Extrafloral Nectaries
Domatia
Volatile Organic Compounds
Ontogeny
Tritrophic Interactions
title_short The ontogeny of plant indirect defenses
title_full The ontogeny of plant indirect defenses
title_fullStr The ontogeny of plant indirect defenses
title_full_unstemmed The ontogeny of plant indirect defenses
title_sort The ontogeny of plant indirect defenses
dc.creator.none.fl_str_mv Quintero, Carolina
Barton, Kasey E.
Boege, Karina
author Quintero, Carolina
author_facet Quintero, Carolina
Barton, Kasey E.
Boege, Karina
author_role author
author2 Barton, Kasey E.
Boege, Karina
author2_role author
author
dc.subject.none.fl_str_mv Plant Rewards
Extrafloral Nectaries
Domatia
Volatile Organic Compounds
Ontogeny
Tritrophic Interactions
topic Plant Rewards
Extrafloral Nectaries
Domatia
Volatile Organic Compounds
Ontogeny
Tritrophic Interactions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Plants frequently attract natural enemies of their herbivores, resulting in a reduction in tissue damage and often in enhanced plant fitness. While such indirect defenses can dramatically change as plants develop, only recently have ecologists begun to explore such changes and evaluate their role in mediating plant-herbivore-natural enemy interactions. Here we review the literature documenting ontogenetic patterns in plant rewards (i.e. extrafloral nectaries (EFNs), food bodies (FBs) and domatia) and volatile organic compounds (VOCs), and identify links between ontogenetic patterns in such traits and the attraction of natural enemies (ants). In the case of reward traits we concentrate in ant-plant studies, which are the most numerous. We report that all indirect defensive traits commonly vary with plant age but ontogenetic trajectories differ among them. Myrmecophytic species, which provide both food and shelter to their defenders, do not produce rewarding traits until a minimum size is reached. Then, a pronounced increase in the abundance of food rewards and domatia often occurs as plants develop, which explains the temporal succession or colony size increase of mutualistic ant species and, in some cases, leads to a reduction in herbivore damage and enhanced fitness as plants age. In contrast, ontogenetic patterns were less consistent in plant species that rely on VOC emissions to attract natural enemies or those that provide only food rewards (EFNs) but not nesting sites to their associated ants, showing an overall decline or lack of trend with plant development, respectively. Future research should focus on uncovering: (i) the costs and mechanisms underlying ontogenetic variation in indirect defenses, (ii) the relative importance of environmental and genetic components shaping these ontogenetic trajectories, and (iii) the consequences of these ontogenetic trajectories on plant fitness. Advances in this area will shed light on the context dependency of bottom-up and top-down controls of herbivore populations and on how natural selection actually shapes the ontogenetic trajectories of these traits.
Fil: Quintero, Carolina. State University Of Colorado-boulder; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Barton, Kasey E.. University Of Hawaii At Manoa; Estados Unidos
Fil: Boege, Karina. Universidad Nacional Autónoma de México; México
description Plants frequently attract natural enemies of their herbivores, resulting in a reduction in tissue damage and often in enhanced plant fitness. While such indirect defenses can dramatically change as plants develop, only recently have ecologists begun to explore such changes and evaluate their role in mediating plant-herbivore-natural enemy interactions. Here we review the literature documenting ontogenetic patterns in plant rewards (i.e. extrafloral nectaries (EFNs), food bodies (FBs) and domatia) and volatile organic compounds (VOCs), and identify links between ontogenetic patterns in such traits and the attraction of natural enemies (ants). In the case of reward traits we concentrate in ant-plant studies, which are the most numerous. We report that all indirect defensive traits commonly vary with plant age but ontogenetic trajectories differ among them. Myrmecophytic species, which provide both food and shelter to their defenders, do not produce rewarding traits until a minimum size is reached. Then, a pronounced increase in the abundance of food rewards and domatia often occurs as plants develop, which explains the temporal succession or colony size increase of mutualistic ant species and, in some cases, leads to a reduction in herbivore damage and enhanced fitness as plants age. In contrast, ontogenetic patterns were less consistent in plant species that rely on VOC emissions to attract natural enemies or those that provide only food rewards (EFNs) but not nesting sites to their associated ants, showing an overall decline or lack of trend with plant development, respectively. Future research should focus on uncovering: (i) the costs and mechanisms underlying ontogenetic variation in indirect defenses, (ii) the relative importance of environmental and genetic components shaping these ontogenetic trajectories, and (iii) the consequences of these ontogenetic trajectories on plant fitness. Advances in this area will shed light on the context dependency of bottom-up and top-down controls of herbivore populations and on how natural selection actually shapes the ontogenetic trajectories of these traits.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6651
Quintero, Carolina; Barton, Kasey E.; Boege, Karina; The ontogeny of plant indirect defenses; Elsevier; Perspectives in Plant Ecology Evolution and Systematics; 15; 5; 9-2013; 245-254
1433-8319
url http://hdl.handle.net/11336/6651
identifier_str_mv Quintero, Carolina; Barton, Kasey E.; Boege, Karina; The ontogeny of plant indirect defenses; Elsevier; Perspectives in Plant Ecology Evolution and Systematics; 15; 5; 9-2013; 245-254
1433-8319
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1433831913000607
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ppees.2013.08.003
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083445296463872
score 13.22299