A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis

Autores
Chavez, Claudio; Haro, Miguel Sofo; Lipovetzky, José; Chierchie, Fernando; Fernandez Moroni, Guillermo; Paolini, Eduardo Emilio; Molina, Jorge Luis; Cancelo, Gustavo; Tiffenberg, Javier; Estrada, Juan
Año de publicación
2020
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The Skipper-CCDs, a special type of charge-coupled device (CCD) sensor that features sub-electron readout noise levels, was proposed decades ago. However, only in recent years it has been possible to develop large size Skipper-CCDs ensuring stable operation. Their extreme low noise operation makes them suitable for experiments that require low thresholds and high energy resolution, such as dark matter and neutrino interactions detection, and more recently quantum-imaging and astronomy. New experiments are planning to use kilograms of active silicon from Skipper-CCDs as sensitive mass. In this way, they can achieve extremely low detection thresholds and a high probability of particle interaction. However, this approach needs arrays of thousands of Skipper- CCDs operating at the same time imposing challenging requirements. Also, introduction of this technology in astronomy and quantum-imaging applications requires a large number of channels per sensor to speed up the readout. The front-end needs to be redesigned from scratch: it must achieve low noise performance, be simple for easy integration and allow the routing of thousands of channels out of the sensors with minimal connections. This paper presents a detailed analysis of options for the front-end electronics and their noise performance. It describes a novel way of using a dual-slope integrator with minimal components to pile up the charge of consecutive readouts of the same pixel in a concept that we call a multi-slope integrator. This reduces drastically the output bandwidth, simplifying the wiring and the warm electronics. These proposals will allow the generation of new scientific instruments based on Skippers-CCD arrays.
Fil: Chavez, Claudio. Universidad Nacional de Asunción; Paraguay
Fil: Haro, Miguel Sofo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Chierchie, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Fernandez Moroni, Guillermo. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Paolini, Eduardo Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Molina, Jorge Luis. Universidad Nacional de Asunción; Paraguay
Fil: Cancelo, Gustavo. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Tiffenberg, Javier. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Estrada, Juan. Fermi National Accelerator Laboratory; Estados Unidos
SPIE Future Sensing Technologies
Estados Unidos
SPIE Future Sensing Technologies
Materia
CCD
Skipper
front-end electronics
low noise
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/157300

id CONICETDig_81b2e934506b9489c77ca674d6366818
oai_identifier_str oai:ri.conicet.gov.ar:11336/157300
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysisChavez, ClaudioHaro, Miguel SofoLipovetzky, JoséChierchie, FernandoFernandez Moroni, GuillermoPaolini, Eduardo EmilioMolina, Jorge LuisCancelo, GustavoTiffenberg, JavierEstrada, JuanCCDSkipperfront-end electronicslow noisehttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The Skipper-CCDs, a special type of charge-coupled device (CCD) sensor that features sub-electron readout noise levels, was proposed decades ago. However, only in recent years it has been possible to develop large size Skipper-CCDs ensuring stable operation. Their extreme low noise operation makes them suitable for experiments that require low thresholds and high energy resolution, such as dark matter and neutrino interactions detection, and more recently quantum-imaging and astronomy. New experiments are planning to use kilograms of active silicon from Skipper-CCDs as sensitive mass. In this way, they can achieve extremely low detection thresholds and a high probability of particle interaction. However, this approach needs arrays of thousands of Skipper- CCDs operating at the same time imposing challenging requirements. Also, introduction of this technology in astronomy and quantum-imaging applications requires a large number of channels per sensor to speed up the readout. The front-end needs to be redesigned from scratch: it must achieve low noise performance, be simple for easy integration and allow the routing of thousands of channels out of the sensors with minimal connections. This paper presents a detailed analysis of options for the front-end electronics and their noise performance. It describes a novel way of using a dual-slope integrator with minimal components to pile up the charge of consecutive readouts of the same pixel in a concept that we call a multi-slope integrator. This reduces drastically the output bandwidth, simplifying the wiring and the warm electronics. These proposals will allow the generation of new scientific instruments based on Skippers-CCD arrays.Fil: Chavez, Claudio. Universidad Nacional de Asunción; ParaguayFil: Haro, Miguel Sofo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Chierchie, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Fernandez Moroni, Guillermo. Fermi National Accelerator Laboratory; Estados UnidosFil: Paolini, Eduardo Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Molina, Jorge Luis. Universidad Nacional de Asunción; ParaguayFil: Cancelo, Gustavo. Fermi National Accelerator Laboratory; Estados UnidosFil: Tiffenberg, Javier. Fermi National Accelerator Laboratory; Estados UnidosFil: Estrada, Juan. Fermi National Accelerator Laboratory; Estados UnidosSPIE Future Sensing TechnologiesEstados UnidosSPIE Future Sensing TechnologiesSPIE2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157300A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis; SPIE Future Sensing Technologies; Estados Unidos; 2020; 1-1497815106386170277-786X1996-756XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1117/12.2580121info:eu-repo/semantics/altIdentifier/url/https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11525/2580121/A-solution-for-future-single-electron-counting-fast-readout-Skipper/10.1117/12.2580121.short?SSO=1Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:10Zoai:ri.conicet.gov.ar:11336/157300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:11.073CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis
title A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis
spellingShingle A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis
Chavez, Claudio
CCD
Skipper
front-end electronics
low noise
title_short A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis
title_full A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis
title_fullStr A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis
title_full_unstemmed A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis
title_sort A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis
dc.creator.none.fl_str_mv Chavez, Claudio
Haro, Miguel Sofo
Lipovetzky, José
Chierchie, Fernando
Fernandez Moroni, Guillermo
Paolini, Eduardo Emilio
Molina, Jorge Luis
Cancelo, Gustavo
Tiffenberg, Javier
Estrada, Juan
author Chavez, Claudio
author_facet Chavez, Claudio
Haro, Miguel Sofo
Lipovetzky, José
Chierchie, Fernando
Fernandez Moroni, Guillermo
Paolini, Eduardo Emilio
Molina, Jorge Luis
Cancelo, Gustavo
Tiffenberg, Javier
Estrada, Juan
author_role author
author2 Haro, Miguel Sofo
Lipovetzky, José
Chierchie, Fernando
Fernandez Moroni, Guillermo
Paolini, Eduardo Emilio
Molina, Jorge Luis
Cancelo, Gustavo
Tiffenberg, Javier
Estrada, Juan
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CCD
Skipper
front-end electronics
low noise
topic CCD
Skipper
front-end electronics
low noise
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The Skipper-CCDs, a special type of charge-coupled device (CCD) sensor that features sub-electron readout noise levels, was proposed decades ago. However, only in recent years it has been possible to develop large size Skipper-CCDs ensuring stable operation. Their extreme low noise operation makes them suitable for experiments that require low thresholds and high energy resolution, such as dark matter and neutrino interactions detection, and more recently quantum-imaging and astronomy. New experiments are planning to use kilograms of active silicon from Skipper-CCDs as sensitive mass. In this way, they can achieve extremely low detection thresholds and a high probability of particle interaction. However, this approach needs arrays of thousands of Skipper- CCDs operating at the same time imposing challenging requirements. Also, introduction of this technology in astronomy and quantum-imaging applications requires a large number of channels per sensor to speed up the readout. The front-end needs to be redesigned from scratch: it must achieve low noise performance, be simple for easy integration and allow the routing of thousands of channels out of the sensors with minimal connections. This paper presents a detailed analysis of options for the front-end electronics and their noise performance. It describes a novel way of using a dual-slope integrator with minimal components to pile up the charge of consecutive readouts of the same pixel in a concept that we call a multi-slope integrator. This reduces drastically the output bandwidth, simplifying the wiring and the warm electronics. These proposals will allow the generation of new scientific instruments based on Skippers-CCD arrays.
Fil: Chavez, Claudio. Universidad Nacional de Asunción; Paraguay
Fil: Haro, Miguel Sofo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Chierchie, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Fernandez Moroni, Guillermo. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Paolini, Eduardo Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Molina, Jorge Luis. Universidad Nacional de Asunción; Paraguay
Fil: Cancelo, Gustavo. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Tiffenberg, Javier. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Estrada, Juan. Fermi National Accelerator Laboratory; Estados Unidos
SPIE Future Sensing Technologies
Estados Unidos
SPIE Future Sensing Technologies
description The Skipper-CCDs, a special type of charge-coupled device (CCD) sensor that features sub-electron readout noise levels, was proposed decades ago. However, only in recent years it has been possible to develop large size Skipper-CCDs ensuring stable operation. Their extreme low noise operation makes them suitable for experiments that require low thresholds and high energy resolution, such as dark matter and neutrino interactions detection, and more recently quantum-imaging and astronomy. New experiments are planning to use kilograms of active silicon from Skipper-CCDs as sensitive mass. In this way, they can achieve extremely low detection thresholds and a high probability of particle interaction. However, this approach needs arrays of thousands of Skipper- CCDs operating at the same time imposing challenging requirements. Also, introduction of this technology in astronomy and quantum-imaging applications requires a large number of channels per sensor to speed up the readout. The front-end needs to be redesigned from scratch: it must achieve low noise performance, be simple for easy integration and allow the routing of thousands of channels out of the sensors with minimal connections. This paper presents a detailed analysis of options for the front-end electronics and their noise performance. It describes a novel way of using a dual-slope integrator with minimal components to pile up the charge of consecutive readouts of the same pixel in a concept that we call a multi-slope integrator. This reduces drastically the output bandwidth, simplifying the wiring and the warm electronics. These proposals will allow the generation of new scientific instruments based on Skippers-CCD arrays.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/157300
A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis; SPIE Future Sensing Technologies; Estados Unidos; 2020; 1-14
9781510638617
0277-786X
1996-756X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/157300
identifier_str_mv A solution for future single-electron-counting fast-readout Skipper-CCD experiments: high channel density front-end electronics design and noise performance analysis; SPIE Future Sensing Technologies; Estados Unidos; 2020; 1-14
9781510638617
0277-786X
1996-756X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1117/12.2580121
info:eu-repo/semantics/altIdentifier/url/https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11525/2580121/A-solution-for-future-single-electron-counting-fast-readout-Skipper/10.1117/12.2580121.short?SSO=1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv SPIE
publisher.none.fl_str_mv SPIE
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268908316262400
score 13.13397