Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole

Autores
Quinteiro, Guillermo Federico; Manzoni, V.; Gester, R. M.; Cunha, A. R.; Pagola, Gabriel Ignacio; Provasi, Patricio Federico
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study of molecules subjected to highly inhomogeneous electric fields, whether static or time-dependent, is relatively unexplored. Advances in this area, as shown in condensed matter physics, could lead to new insights into molecular physics and offer novel ways to control molecules, driving technological innovations. In this work, we numerically investigate the properties of imidazole and pyrrole under the influence of highly inhomogeneous static and dynamic electric fields, modeled by a new procedure employing charge configurations, using density functional theory calculations with the DALTON software package. We analyze their dipole moments, highest occupied molecular orbital–lowest unoccupied molecular orbital gap energies, polarizability, and first and second hyperpolarizabilities across different field orientations. Our results show that inhomogeneous fields acting upon the molecule would induce changes in nonlinear optical properties, with the response depending on the nature of the inhomogeneity. These findings are relevant for fundamental research and practical applications. Tailored electric non-uniform fields can help unveil complex relationships among molecular orbitals that induce specific nonlinear optical phenomena. Moreover, they can enhance or suppress nonlinear responses, opening up new avenues for molecular engineering and device design.
Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Manzoni, V.. Universidade Federal de Alagoas; Brasil
Fil: Gester, R. M.. Universidade Federal do Sul da Bahia; Brasil
Fil: Cunha, A. R.. Universidade Federal do Maranhao; Brasil
Fil: Pagola, Gabriel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Provasi, Patricio Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Materia
Inhomogeneous electric field
Dipole moment
HOMO-LUMO
NLO
optical vortex
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275398

id CONICETDig_80f96a169fb207fdfbed28287215898f
oai_identifier_str oai:ri.conicet.gov.ar:11336/275398
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrroleQuinteiro, Guillermo FedericoManzoni, V.Gester, R. M.Cunha, A. R.Pagola, Gabriel IgnacioProvasi, Patricio FedericoInhomogeneous electric fieldDipole momentHOMO-LUMONLOoptical vortexhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The study of molecules subjected to highly inhomogeneous electric fields, whether static or time-dependent, is relatively unexplored. Advances in this area, as shown in condensed matter physics, could lead to new insights into molecular physics and offer novel ways to control molecules, driving technological innovations. In this work, we numerically investigate the properties of imidazole and pyrrole under the influence of highly inhomogeneous static and dynamic electric fields, modeled by a new procedure employing charge configurations, using density functional theory calculations with the DALTON software package. We analyze their dipole moments, highest occupied molecular orbital–lowest unoccupied molecular orbital gap energies, polarizability, and first and second hyperpolarizabilities across different field orientations. Our results show that inhomogeneous fields acting upon the molecule would induce changes in nonlinear optical properties, with the response depending on the nature of the inhomogeneity. These findings are relevant for fundamental research and practical applications. Tailored electric non-uniform fields can help unveil complex relationships among molecular orbitals that induce specific nonlinear optical phenomena. Moreover, they can enhance or suppress nonlinear responses, opening up new avenues for molecular engineering and device design.Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Manzoni, V.. Universidade Federal de Alagoas; BrasilFil: Gester, R. M.. Universidade Federal do Sul da Bahia; BrasilFil: Cunha, A. R.. Universidade Federal do Maranhao; BrasilFil: Pagola, Gabriel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Provasi, Patricio Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaAmerican Institute of Physics2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275398Quinteiro, Guillermo Federico; Manzoni, V.; Gester, R. M.; Cunha, A. R.; Pagola, Gabriel Ignacio; et al.; Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole; American Institute of Physics; Journal of Chemical Physics; 162; 14; 4-2025; 1-180021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/162/14/144310/3343079/Understanding-nonlinear-molecular-responses-ininfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0253042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:41:13Zoai:ri.conicet.gov.ar:11336/275398instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:41:13.778CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole
title Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole
spellingShingle Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole
Quinteiro, Guillermo Federico
Inhomogeneous electric field
Dipole moment
HOMO-LUMO
NLO
optical vortex
title_short Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole
title_full Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole
title_fullStr Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole
title_full_unstemmed Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole
title_sort Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole
dc.creator.none.fl_str_mv Quinteiro, Guillermo Federico
Manzoni, V.
Gester, R. M.
Cunha, A. R.
Pagola, Gabriel Ignacio
Provasi, Patricio Federico
author Quinteiro, Guillermo Federico
author_facet Quinteiro, Guillermo Federico
Manzoni, V.
Gester, R. M.
Cunha, A. R.
Pagola, Gabriel Ignacio
Provasi, Patricio Federico
author_role author
author2 Manzoni, V.
Gester, R. M.
Cunha, A. R.
Pagola, Gabriel Ignacio
Provasi, Patricio Federico
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Inhomogeneous electric field
Dipole moment
HOMO-LUMO
NLO
optical vortex
topic Inhomogeneous electric field
Dipole moment
HOMO-LUMO
NLO
optical vortex
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The study of molecules subjected to highly inhomogeneous electric fields, whether static or time-dependent, is relatively unexplored. Advances in this area, as shown in condensed matter physics, could lead to new insights into molecular physics and offer novel ways to control molecules, driving technological innovations. In this work, we numerically investigate the properties of imidazole and pyrrole under the influence of highly inhomogeneous static and dynamic electric fields, modeled by a new procedure employing charge configurations, using density functional theory calculations with the DALTON software package. We analyze their dipole moments, highest occupied molecular orbital–lowest unoccupied molecular orbital gap energies, polarizability, and first and second hyperpolarizabilities across different field orientations. Our results show that inhomogeneous fields acting upon the molecule would induce changes in nonlinear optical properties, with the response depending on the nature of the inhomogeneity. These findings are relevant for fundamental research and practical applications. Tailored electric non-uniform fields can help unveil complex relationships among molecular orbitals that induce specific nonlinear optical phenomena. Moreover, they can enhance or suppress nonlinear responses, opening up new avenues for molecular engineering and device design.
Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Manzoni, V.. Universidade Federal de Alagoas; Brasil
Fil: Gester, R. M.. Universidade Federal do Sul da Bahia; Brasil
Fil: Cunha, A. R.. Universidade Federal do Maranhao; Brasil
Fil: Pagola, Gabriel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Provasi, Patricio Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
description The study of molecules subjected to highly inhomogeneous electric fields, whether static or time-dependent, is relatively unexplored. Advances in this area, as shown in condensed matter physics, could lead to new insights into molecular physics and offer novel ways to control molecules, driving technological innovations. In this work, we numerically investigate the properties of imidazole and pyrrole under the influence of highly inhomogeneous static and dynamic electric fields, modeled by a new procedure employing charge configurations, using density functional theory calculations with the DALTON software package. We analyze their dipole moments, highest occupied molecular orbital–lowest unoccupied molecular orbital gap energies, polarizability, and first and second hyperpolarizabilities across different field orientations. Our results show that inhomogeneous fields acting upon the molecule would induce changes in nonlinear optical properties, with the response depending on the nature of the inhomogeneity. These findings are relevant for fundamental research and practical applications. Tailored electric non-uniform fields can help unveil complex relationships among molecular orbitals that induce specific nonlinear optical phenomena. Moreover, they can enhance or suppress nonlinear responses, opening up new avenues for molecular engineering and device design.
publishDate 2025
dc.date.none.fl_str_mv 2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275398
Quinteiro, Guillermo Federico; Manzoni, V.; Gester, R. M.; Cunha, A. R.; Pagola, Gabriel Ignacio; et al.; Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole; American Institute of Physics; Journal of Chemical Physics; 162; 14; 4-2025; 1-18
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275398
identifier_str_mv Quinteiro, Guillermo Federico; Manzoni, V.; Gester, R. M.; Cunha, A. R.; Pagola, Gabriel Ignacio; et al.; Understanding nonlinear molecular responses in highly inhomogeneous electric fields: Insights from imidazole and pyrrole; American Institute of Physics; Journal of Chemical Physics; 162; 14; 4-2025; 1-18
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/162/14/144310/3343079/Understanding-nonlinear-molecular-responses-in
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0253042
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335788658786304
score 12.952241