Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section

Autores
Valencia, Claudio Ismael; Riso, Máximo A.; Cuevas, Mauro; Depine, Ricardo Angel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a rigorous electromagnetic method based on Green's second identity for studying the plasmonic response of graphene-coated wires of arbitrary shape. The wire is illuminated perpendicular to its axis by a monochromatic electromagnetic wave and the wire substrate is homogeneous and isotropic. The field is expressed everywhere in terms of two unknown source functions evaluated on the graphene coating which can be obtained from the numerical solution of a coupled pair of inhomogeneous integral equations. To assess the validity of the Green formulation, the scattering and absorption efficiencies obtained numerically in the particular case of circular wires are compared with those obtained from the multipolar Mie theory. An excellent agreement is observed in this particular case, for both metallic and dielectric substrates. To explore the effects that the break of the rotational symmetry of the wire section introduces in the plasmonic features of the scattering and absorption response, the Green formulation is applied to the case of graphene-coated wires of elliptical section. As might be expected from symmetry arguments, we find a two-dimensional anisotropy in the angular optical response of the wire, particularly evident in the frequency splitting of multipolar plasmonic resonances. The comparison between the spectral position of the enhancements in the scattering and absorption efficiency spectra for low-eccentricity elliptical and circular wires allows us to guess the multipolar order of each plasmonic resonance. We present calculations of the near-field distribution for different frequencies which explicitly reveal the multipolar order of the plasmonic resonances. They also confirm the previous guess and serve as a further test on the validity of the Green formulation.
Fil: Valencia, Claudio Ismael. Universidad Autonoma de Baja California; México
Fil: Riso, Máximo A.. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cuevas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano; Argentina
Fil: Depine, Ricardo Angel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Surface Plasmons
Graphene
Scattering
Electromagnetic Methods
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52383

id CONICETDig_808a1acb7f3f040526bd498ea3966ce4
oai_identifier_str oai:ri.conicet.gov.ar:11336/52383
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary sectionValencia, Claudio IsmaelRiso, Máximo A.Cuevas, MauroDepine, Ricardo AngelSurface PlasmonsGrapheneScatteringElectromagnetic Methodshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a rigorous electromagnetic method based on Green's second identity for studying the plasmonic response of graphene-coated wires of arbitrary shape. The wire is illuminated perpendicular to its axis by a monochromatic electromagnetic wave and the wire substrate is homogeneous and isotropic. The field is expressed everywhere in terms of two unknown source functions evaluated on the graphene coating which can be obtained from the numerical solution of a coupled pair of inhomogeneous integral equations. To assess the validity of the Green formulation, the scattering and absorption efficiencies obtained numerically in the particular case of circular wires are compared with those obtained from the multipolar Mie theory. An excellent agreement is observed in this particular case, for both metallic and dielectric substrates. To explore the effects that the break of the rotational symmetry of the wire section introduces in the plasmonic features of the scattering and absorption response, the Green formulation is applied to the case of graphene-coated wires of elliptical section. As might be expected from symmetry arguments, we find a two-dimensional anisotropy in the angular optical response of the wire, particularly evident in the frequency splitting of multipolar plasmonic resonances. The comparison between the spectral position of the enhancements in the scattering and absorption efficiency spectra for low-eccentricity elliptical and circular wires allows us to guess the multipolar order of each plasmonic resonance. We present calculations of the near-field distribution for different frequencies which explicitly reveal the multipolar order of the plasmonic resonances. They also confirm the previous guess and serve as a further test on the validity of the Green formulation.Fil: Valencia, Claudio Ismael. Universidad Autonoma de Baja California; MéxicoFil: Riso, Máximo A.. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cuevas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano; ArgentinaFil: Depine, Ricardo Angel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaOptical Society of America2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52383Valencia, Claudio Ismael; Riso, Máximo A.; Cuevas, Mauro; Depine, Ricardo Angel; Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 34; 6; 3-2017; 1075-10830740-3224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.34.001075info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:50Zoai:ri.conicet.gov.ar:11336/52383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:50.754CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
title Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
spellingShingle Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
Valencia, Claudio Ismael
Surface Plasmons
Graphene
Scattering
Electromagnetic Methods
title_short Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
title_full Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
title_fullStr Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
title_full_unstemmed Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
title_sort Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
dc.creator.none.fl_str_mv Valencia, Claudio Ismael
Riso, Máximo A.
Cuevas, Mauro
Depine, Ricardo Angel
author Valencia, Claudio Ismael
author_facet Valencia, Claudio Ismael
Riso, Máximo A.
Cuevas, Mauro
Depine, Ricardo Angel
author_role author
author2 Riso, Máximo A.
Cuevas, Mauro
Depine, Ricardo Angel
author2_role author
author
author
dc.subject.none.fl_str_mv Surface Plasmons
Graphene
Scattering
Electromagnetic Methods
topic Surface Plasmons
Graphene
Scattering
Electromagnetic Methods
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a rigorous electromagnetic method based on Green's second identity for studying the plasmonic response of graphene-coated wires of arbitrary shape. The wire is illuminated perpendicular to its axis by a monochromatic electromagnetic wave and the wire substrate is homogeneous and isotropic. The field is expressed everywhere in terms of two unknown source functions evaluated on the graphene coating which can be obtained from the numerical solution of a coupled pair of inhomogeneous integral equations. To assess the validity of the Green formulation, the scattering and absorption efficiencies obtained numerically in the particular case of circular wires are compared with those obtained from the multipolar Mie theory. An excellent agreement is observed in this particular case, for both metallic and dielectric substrates. To explore the effects that the break of the rotational symmetry of the wire section introduces in the plasmonic features of the scattering and absorption response, the Green formulation is applied to the case of graphene-coated wires of elliptical section. As might be expected from symmetry arguments, we find a two-dimensional anisotropy in the angular optical response of the wire, particularly evident in the frequency splitting of multipolar plasmonic resonances. The comparison between the spectral position of the enhancements in the scattering and absorption efficiency spectra for low-eccentricity elliptical and circular wires allows us to guess the multipolar order of each plasmonic resonance. We present calculations of the near-field distribution for different frequencies which explicitly reveal the multipolar order of the plasmonic resonances. They also confirm the previous guess and serve as a further test on the validity of the Green formulation.
Fil: Valencia, Claudio Ismael. Universidad Autonoma de Baja California; México
Fil: Riso, Máximo A.. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cuevas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano; Argentina
Fil: Depine, Ricardo Angel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We present a rigorous electromagnetic method based on Green's second identity for studying the plasmonic response of graphene-coated wires of arbitrary shape. The wire is illuminated perpendicular to its axis by a monochromatic electromagnetic wave and the wire substrate is homogeneous and isotropic. The field is expressed everywhere in terms of two unknown source functions evaluated on the graphene coating which can be obtained from the numerical solution of a coupled pair of inhomogeneous integral equations. To assess the validity of the Green formulation, the scattering and absorption efficiencies obtained numerically in the particular case of circular wires are compared with those obtained from the multipolar Mie theory. An excellent agreement is observed in this particular case, for both metallic and dielectric substrates. To explore the effects that the break of the rotational symmetry of the wire section introduces in the plasmonic features of the scattering and absorption response, the Green formulation is applied to the case of graphene-coated wires of elliptical section. As might be expected from symmetry arguments, we find a two-dimensional anisotropy in the angular optical response of the wire, particularly evident in the frequency splitting of multipolar plasmonic resonances. The comparison between the spectral position of the enhancements in the scattering and absorption efficiency spectra for low-eccentricity elliptical and circular wires allows us to guess the multipolar order of each plasmonic resonance. We present calculations of the near-field distribution for different frequencies which explicitly reveal the multipolar order of the plasmonic resonances. They also confirm the previous guess and serve as a further test on the validity of the Green formulation.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52383
Valencia, Claudio Ismael; Riso, Máximo A.; Cuevas, Mauro; Depine, Ricardo Angel; Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 34; 6; 3-2017; 1075-1083
0740-3224
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52383
identifier_str_mv Valencia, Claudio Ismael; Riso, Máximo A.; Cuevas, Mauro; Depine, Ricardo Angel; Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 34; 6; 3-2017; 1075-1083
0740-3224
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.34.001075
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Optical Society of America
publisher.none.fl_str_mv Optical Society of America
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082931142950912
score 13.22299