Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section
- Autores
- Valencia, Claudio Ismael; Riso, Máximo A.; Cuevas, Mauro; Depine, Ricardo Angel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a rigorous electromagnetic method based on Green's second identity for studying the plasmonic response of graphene-coated wires of arbitrary shape. The wire is illuminated perpendicular to its axis by a monochromatic electromagnetic wave and the wire substrate is homogeneous and isotropic. The field is expressed everywhere in terms of two unknown source functions evaluated on the graphene coating which can be obtained from the numerical solution of a coupled pair of inhomogeneous integral equations. To assess the validity of the Green formulation, the scattering and absorption efficiencies obtained numerically in the particular case of circular wires are compared with those obtained from the multipolar Mie theory. An excellent agreement is observed in this particular case, for both metallic and dielectric substrates. To explore the effects that the break of the rotational symmetry of the wire section introduces in the plasmonic features of the scattering and absorption response, the Green formulation is applied to the case of graphene-coated wires of elliptical section. As might be expected from symmetry arguments, we find a two-dimensional anisotropy in the angular optical response of the wire, particularly evident in the frequency splitting of multipolar plasmonic resonances. The comparison between the spectral position of the enhancements in the scattering and absorption efficiency spectra for low-eccentricity elliptical and circular wires allows us to guess the multipolar order of each plasmonic resonance. We present calculations of the near-field distribution for different frequencies which explicitly reveal the multipolar order of the plasmonic resonances. They also confirm the previous guess and serve as a further test on the validity of the Green formulation.
Fil: Valencia, Claudio Ismael. Universidad Autonoma de Baja California; México
Fil: Riso, Máximo A.. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cuevas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano; Argentina
Fil: Depine, Ricardo Angel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Surface Plasmons
Graphene
Scattering
Electromagnetic Methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52383
Ver los metadatos del registro completo
id |
CONICETDig_808a1acb7f3f040526bd498ea3966ce4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52383 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary sectionValencia, Claudio IsmaelRiso, Máximo A.Cuevas, MauroDepine, Ricardo AngelSurface PlasmonsGrapheneScatteringElectromagnetic Methodshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a rigorous electromagnetic method based on Green's second identity for studying the plasmonic response of graphene-coated wires of arbitrary shape. The wire is illuminated perpendicular to its axis by a monochromatic electromagnetic wave and the wire substrate is homogeneous and isotropic. The field is expressed everywhere in terms of two unknown source functions evaluated on the graphene coating which can be obtained from the numerical solution of a coupled pair of inhomogeneous integral equations. To assess the validity of the Green formulation, the scattering and absorption efficiencies obtained numerically in the particular case of circular wires are compared with those obtained from the multipolar Mie theory. An excellent agreement is observed in this particular case, for both metallic and dielectric substrates. To explore the effects that the break of the rotational symmetry of the wire section introduces in the plasmonic features of the scattering and absorption response, the Green formulation is applied to the case of graphene-coated wires of elliptical section. As might be expected from symmetry arguments, we find a two-dimensional anisotropy in the angular optical response of the wire, particularly evident in the frequency splitting of multipolar plasmonic resonances. The comparison between the spectral position of the enhancements in the scattering and absorption efficiency spectra for low-eccentricity elliptical and circular wires allows us to guess the multipolar order of each plasmonic resonance. We present calculations of the near-field distribution for different frequencies which explicitly reveal the multipolar order of the plasmonic resonances. They also confirm the previous guess and serve as a further test on the validity of the Green formulation.Fil: Valencia, Claudio Ismael. Universidad Autonoma de Baja California; MéxicoFil: Riso, Máximo A.. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cuevas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano; ArgentinaFil: Depine, Ricardo Angel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaOptical Society of America2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52383Valencia, Claudio Ismael; Riso, Máximo A.; Cuevas, Mauro; Depine, Ricardo Angel; Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 34; 6; 3-2017; 1075-10830740-3224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.34.001075info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:50Zoai:ri.conicet.gov.ar:11336/52383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:50.754CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section |
title |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section |
spellingShingle |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section Valencia, Claudio Ismael Surface Plasmons Graphene Scattering Electromagnetic Methods |
title_short |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section |
title_full |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section |
title_fullStr |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section |
title_full_unstemmed |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section |
title_sort |
Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section |
dc.creator.none.fl_str_mv |
Valencia, Claudio Ismael Riso, Máximo A. Cuevas, Mauro Depine, Ricardo Angel |
author |
Valencia, Claudio Ismael |
author_facet |
Valencia, Claudio Ismael Riso, Máximo A. Cuevas, Mauro Depine, Ricardo Angel |
author_role |
author |
author2 |
Riso, Máximo A. Cuevas, Mauro Depine, Ricardo Angel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Surface Plasmons Graphene Scattering Electromagnetic Methods |
topic |
Surface Plasmons Graphene Scattering Electromagnetic Methods |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a rigorous electromagnetic method based on Green's second identity for studying the plasmonic response of graphene-coated wires of arbitrary shape. The wire is illuminated perpendicular to its axis by a monochromatic electromagnetic wave and the wire substrate is homogeneous and isotropic. The field is expressed everywhere in terms of two unknown source functions evaluated on the graphene coating which can be obtained from the numerical solution of a coupled pair of inhomogeneous integral equations. To assess the validity of the Green formulation, the scattering and absorption efficiencies obtained numerically in the particular case of circular wires are compared with those obtained from the multipolar Mie theory. An excellent agreement is observed in this particular case, for both metallic and dielectric substrates. To explore the effects that the break of the rotational symmetry of the wire section introduces in the plasmonic features of the scattering and absorption response, the Green formulation is applied to the case of graphene-coated wires of elliptical section. As might be expected from symmetry arguments, we find a two-dimensional anisotropy in the angular optical response of the wire, particularly evident in the frequency splitting of multipolar plasmonic resonances. The comparison between the spectral position of the enhancements in the scattering and absorption efficiency spectra for low-eccentricity elliptical and circular wires allows us to guess the multipolar order of each plasmonic resonance. We present calculations of the near-field distribution for different frequencies which explicitly reveal the multipolar order of the plasmonic resonances. They also confirm the previous guess and serve as a further test on the validity of the Green formulation. Fil: Valencia, Claudio Ismael. Universidad Autonoma de Baja California; México Fil: Riso, Máximo A.. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Cuevas, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Belgrano; Argentina Fil: Depine, Ricardo Angel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
We present a rigorous electromagnetic method based on Green's second identity for studying the plasmonic response of graphene-coated wires of arbitrary shape. The wire is illuminated perpendicular to its axis by a monochromatic electromagnetic wave and the wire substrate is homogeneous and isotropic. The field is expressed everywhere in terms of two unknown source functions evaluated on the graphene coating which can be obtained from the numerical solution of a coupled pair of inhomogeneous integral equations. To assess the validity of the Green formulation, the scattering and absorption efficiencies obtained numerically in the particular case of circular wires are compared with those obtained from the multipolar Mie theory. An excellent agreement is observed in this particular case, for both metallic and dielectric substrates. To explore the effects that the break of the rotational symmetry of the wire section introduces in the plasmonic features of the scattering and absorption response, the Green formulation is applied to the case of graphene-coated wires of elliptical section. As might be expected from symmetry arguments, we find a two-dimensional anisotropy in the angular optical response of the wire, particularly evident in the frequency splitting of multipolar plasmonic resonances. The comparison between the spectral position of the enhancements in the scattering and absorption efficiency spectra for low-eccentricity elliptical and circular wires allows us to guess the multipolar order of each plasmonic resonance. We present calculations of the near-field distribution for different frequencies which explicitly reveal the multipolar order of the plasmonic resonances. They also confirm the previous guess and serve as a further test on the validity of the Green formulation. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52383 Valencia, Claudio Ismael; Riso, Máximo A.; Cuevas, Mauro; Depine, Ricardo Angel; Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 34; 6; 3-2017; 1075-1083 0740-3224 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52383 |
identifier_str_mv |
Valencia, Claudio Ismael; Riso, Máximo A.; Cuevas, Mauro; Depine, Ricardo Angel; Green formulation for studying electromagnetic scattering from graphene-coated wires of arbitrary section; Optical Society of America; Journal of the Optical Society of America B-Optical Physics; 34; 6; 3-2017; 1075-1083 0740-3224 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.34.001075 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Optical Society of America |
publisher.none.fl_str_mv |
Optical Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082931142950912 |
score |
13.22299 |