Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break
- Autores
- Cravero, Fiorella; Diaz, Monica Fatima; Ponzoni, Ignacio
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The artificial intelligence-based prediction of the mechanical properties derived from the tensile test, plays a key role in assessing the application profile of new polymeric materials, specifically in the design stage, prior to synthesis. This strategy saves time and resources when creating new polymers with improved properties that are increasingly demanded by the market. A quantitative structure-property relationship (QSPR) model for tensile strength at break is presented in this work. The QSPR methodology applied here is based on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From the whole study, a QSPR model composed of five molecular descriptors that achieved a correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of analysis: a more general one in which models are discarded for redundant information metrics and a deeper one in which a chemistry expert can make decisions on the composition of the model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In this way, with the present work, we close a contribution cycle to polymer informatics, providing QSPR models oriented to the prediction of mechanical properties related to the tensile test.
Fil: Cravero, Fiorella. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Diaz, Monica Fatima. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
MACHINE LEARNING
VISUAL ANALYTICS
POLYMER INFORMATICS
QSPR
MECHANICAL PROPERTIES
STRENGTH AT BREAK
TENSILE TEST - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/162419
Ver los metadatos del registro completo
id |
CONICETDig_80804fbc56dfe337738829617ad944e8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/162419 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at breakCravero, FiorellaDiaz, Monica FatimaPonzoni, IgnacioMACHINE LEARNINGVISUAL ANALYTICSPOLYMER INFORMATICSQSPRMECHANICAL PROPERTIESSTRENGTH AT BREAKTENSILE TESThttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The artificial intelligence-based prediction of the mechanical properties derived from the tensile test, plays a key role in assessing the application profile of new polymeric materials, specifically in the design stage, prior to synthesis. This strategy saves time and resources when creating new polymers with improved properties that are increasingly demanded by the market. A quantitative structure-property relationship (QSPR) model for tensile strength at break is presented in this work. The QSPR methodology applied here is based on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From the whole study, a QSPR model composed of five molecular descriptors that achieved a correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of analysis: a more general one in which models are discarded for redundant information metrics and a deeper one in which a chemistry expert can make decisions on the composition of the model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In this way, with the present work, we close a contribution cycle to polymer informatics, providing QSPR models oriented to the prediction of mechanical properties related to the tensile test.Fil: Cravero, Fiorella. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Diaz, Monica Fatima. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaAmerican Institute of Physics2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162419Cravero, Fiorella; Diaz, Monica Fatima; Ponzoni, Ignacio; Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break; American Institute of Physics; Journal of Chemical Physics; 156; 20; 5-2022; 1-310021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0087392info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0087392info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:56Zoai:ri.conicet.gov.ar:11336/162419instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:57.116CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break |
title |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break |
spellingShingle |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break Cravero, Fiorella MACHINE LEARNING VISUAL ANALYTICS POLYMER INFORMATICS QSPR MECHANICAL PROPERTIES STRENGTH AT BREAK TENSILE TEST |
title_short |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break |
title_full |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break |
title_fullStr |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break |
title_full_unstemmed |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break |
title_sort |
Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break |
dc.creator.none.fl_str_mv |
Cravero, Fiorella Diaz, Monica Fatima Ponzoni, Ignacio |
author |
Cravero, Fiorella |
author_facet |
Cravero, Fiorella Diaz, Monica Fatima Ponzoni, Ignacio |
author_role |
author |
author2 |
Diaz, Monica Fatima Ponzoni, Ignacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MACHINE LEARNING VISUAL ANALYTICS POLYMER INFORMATICS QSPR MECHANICAL PROPERTIES STRENGTH AT BREAK TENSILE TEST |
topic |
MACHINE LEARNING VISUAL ANALYTICS POLYMER INFORMATICS QSPR MECHANICAL PROPERTIES STRENGTH AT BREAK TENSILE TEST |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The artificial intelligence-based prediction of the mechanical properties derived from the tensile test, plays a key role in assessing the application profile of new polymeric materials, specifically in the design stage, prior to synthesis. This strategy saves time and resources when creating new polymers with improved properties that are increasingly demanded by the market. A quantitative structure-property relationship (QSPR) model for tensile strength at break is presented in this work. The QSPR methodology applied here is based on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From the whole study, a QSPR model composed of five molecular descriptors that achieved a correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of analysis: a more general one in which models are discarded for redundant information metrics and a deeper one in which a chemistry expert can make decisions on the composition of the model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In this way, with the present work, we close a contribution cycle to polymer informatics, providing QSPR models oriented to the prediction of mechanical properties related to the tensile test. Fil: Cravero, Fiorella. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Diaz, Monica Fatima. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina |
description |
The artificial intelligence-based prediction of the mechanical properties derived from the tensile test, plays a key role in assessing the application profile of new polymeric materials, specifically in the design stage, prior to synthesis. This strategy saves time and resources when creating new polymers with improved properties that are increasingly demanded by the market. A quantitative structure-property relationship (QSPR) model for tensile strength at break is presented in this work. The QSPR methodology applied here is based on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From the whole study, a QSPR model composed of five molecular descriptors that achieved a correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of analysis: a more general one in which models are discarded for redundant information metrics and a deeper one in which a chemistry expert can make decisions on the composition of the model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In this way, with the present work, we close a contribution cycle to polymer informatics, providing QSPR models oriented to the prediction of mechanical properties related to the tensile test. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/162419 Cravero, Fiorella; Diaz, Monica Fatima; Ponzoni, Ignacio; Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break; American Institute of Physics; Journal of Chemical Physics; 156; 20; 5-2022; 1-31 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/162419 |
identifier_str_mv |
Cravero, Fiorella; Diaz, Monica Fatima; Ponzoni, Ignacio; Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break; American Institute of Physics; Journal of Chemical Physics; 156; 20; 5-2022; 1-31 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0087392 info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0087392 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614246911967232 |
score |
13.070432 |