Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs

Autores
Aita, Hugo Alberto; Arrachea, Liliana del Carmen; Naon, Carlos Maria; Fradkin, Eduardo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs. The first one corresponds to filling ν=1 and tunneling coupling to the reservoirs. The second one corresponds to integer or fractional filling of the sequence ν=1/m (with m odd), and capacitive coupling to the reservoirs. In both cases, we solve the problem by means of nonequilibrium Green function formalism. We show that heat propagates chirally along the edge in the two setups. We identify two temperature regimes, defined by Δ, the mean level spacing of the edge. At low temperatures, T<Δ, finite size effects play an important role in heat transport, for both types of contacts. The nature of the contacts manifests itself in different power laws for the thermal conductance as a function of the temperature. For capacitive couplings, a highly nonuniversal behavior takes place, through a prefactor that depends on the length of the edge as well as on the coupling strengths and the filling fraction. For larger temperatures, T>Δ, finite-size effects become irrelevant, but the heat transport strongly depends on the strength of the edge-reservoir interactions, in both cases. The thermal conductance for tunneling coupling grows linearly with T, whereas for the capacitive case, it saturates to a value that depends on the coupling strengths and the filling factors of the edge and the contacts.
Fil: Aita, Hugo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Fisica La Plata; Argentina;
Fil: Arrachea, Liliana del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina;
Fil: Naon, Carlos Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Fisica La Plata; Argentina;
Fil: Fradkin, Eduardo. University of Illinois at Urbana-Champaign. Department of Physics and Institute for Condensed Matter Theory; Estados Unidos de América;
Materia
quantum
transport
hall
fields
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/1322

id CONICETDig_807411c9ce4ae2c1faa104902e805a72
oai_identifier_str oai:ri.conicet.gov.ar:11336/1322
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirsAita, Hugo AlbertoArrachea, Liliana del CarmenNaon, Carlos MariaFradkin, Eduardoquantumtransporthallfieldshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs. The first one corresponds to filling ν=1 and tunneling coupling to the reservoirs. The second one corresponds to integer or fractional filling of the sequence ν=1/m (with m odd), and capacitive coupling to the reservoirs. In both cases, we solve the problem by means of nonequilibrium Green function formalism. We show that heat propagates chirally along the edge in the two setups. We identify two temperature regimes, defined by Δ, the mean level spacing of the edge. At low temperatures, T<Δ, finite size effects play an important role in heat transport, for both types of contacts. The nature of the contacts manifests itself in different power laws for the thermal conductance as a function of the temperature. For capacitive couplings, a highly nonuniversal behavior takes place, through a prefactor that depends on the length of the edge as well as on the coupling strengths and the filling fraction. For larger temperatures, T>Δ, finite-size effects become irrelevant, but the heat transport strongly depends on the strength of the edge-reservoir interactions, in both cases. The thermal conductance for tunneling coupling grows linearly with T, whereas for the capacitive case, it saturates to a value that depends on the coupling strengths and the filling factors of the edge and the contacts.Fil: Aita, Hugo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Fisica La Plata; Argentina;Fil: Arrachea, Liliana del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina;Fil: Naon, Carlos Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Fisica La Plata; Argentina;Fil: Fradkin, Eduardo. University of Illinois at Urbana-Champaign. Department of Physics and Institute for Condensed Matter Theory; Estados Unidos de América;Amer Physical Soc2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1322Aita, Hugo Alberto; Arrachea, Liliana del Carmen; Naon, Carlos Maria; Fradkin, Eduardo; Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs; Amer Physical Soc; Physical Review B; 88; 8-2013; 85122-851221098-0121enginfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1305.5833v2info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.88.085122info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:41Zoai:ri.conicet.gov.ar:11336/1322instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:41.329CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
title Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
spellingShingle Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
Aita, Hugo Alberto
quantum
transport
hall
fields
title_short Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
title_full Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
title_fullStr Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
title_full_unstemmed Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
title_sort Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
dc.creator.none.fl_str_mv Aita, Hugo Alberto
Arrachea, Liliana del Carmen
Naon, Carlos Maria
Fradkin, Eduardo
author Aita, Hugo Alberto
author_facet Aita, Hugo Alberto
Arrachea, Liliana del Carmen
Naon, Carlos Maria
Fradkin, Eduardo
author_role author
author2 Arrachea, Liliana del Carmen
Naon, Carlos Maria
Fradkin, Eduardo
author2_role author
author
author
dc.subject.none.fl_str_mv quantum
transport
hall
fields
topic quantum
transport
hall
fields
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs. The first one corresponds to filling ν=1 and tunneling coupling to the reservoirs. The second one corresponds to integer or fractional filling of the sequence ν=1/m (with m odd), and capacitive coupling to the reservoirs. In both cases, we solve the problem by means of nonequilibrium Green function formalism. We show that heat propagates chirally along the edge in the two setups. We identify two temperature regimes, defined by Δ, the mean level spacing of the edge. At low temperatures, T<Δ, finite size effects play an important role in heat transport, for both types of contacts. The nature of the contacts manifests itself in different power laws for the thermal conductance as a function of the temperature. For capacitive couplings, a highly nonuniversal behavior takes place, through a prefactor that depends on the length of the edge as well as on the coupling strengths and the filling fraction. For larger temperatures, T>Δ, finite-size effects become irrelevant, but the heat transport strongly depends on the strength of the edge-reservoir interactions, in both cases. The thermal conductance for tunneling coupling grows linearly with T, whereas for the capacitive case, it saturates to a value that depends on the coupling strengths and the filling factors of the edge and the contacts.
Fil: Aita, Hugo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Fisica La Plata; Argentina;
Fil: Arrachea, Liliana del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina;
Fil: Naon, Carlos Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - La Plata. Instituto de Fisica La Plata; Argentina;
Fil: Fradkin, Eduardo. University of Illinois at Urbana-Champaign. Department of Physics and Institute for Condensed Matter Theory; Estados Unidos de América;
description We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs. The first one corresponds to filling ν=1 and tunneling coupling to the reservoirs. The second one corresponds to integer or fractional filling of the sequence ν=1/m (with m odd), and capacitive coupling to the reservoirs. In both cases, we solve the problem by means of nonequilibrium Green function formalism. We show that heat propagates chirally along the edge in the two setups. We identify two temperature regimes, defined by Δ, the mean level spacing of the edge. At low temperatures, T<Δ, finite size effects play an important role in heat transport, for both types of contacts. The nature of the contacts manifests itself in different power laws for the thermal conductance as a function of the temperature. For capacitive couplings, a highly nonuniversal behavior takes place, through a prefactor that depends on the length of the edge as well as on the coupling strengths and the filling fraction. For larger temperatures, T>Δ, finite-size effects become irrelevant, but the heat transport strongly depends on the strength of the edge-reservoir interactions, in both cases. The thermal conductance for tunneling coupling grows linearly with T, whereas for the capacitive case, it saturates to a value that depends on the coupling strengths and the filling factors of the edge and the contacts.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/1322
Aita, Hugo Alberto; Arrachea, Liliana del Carmen; Naon, Carlos Maria; Fradkin, Eduardo; Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs; Amer Physical Soc; Physical Review B; 88; 8-2013; 85122-85122
1098-0121
url http://hdl.handle.net/11336/1322
identifier_str_mv Aita, Hugo Alberto; Arrachea, Liliana del Carmen; Naon, Carlos Maria; Fradkin, Eduardo; Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs; Amer Physical Soc; Physical Review B; 88; 8-2013; 85122-85122
1098-0121
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1305.5833v2
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.88.085122
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Amer Physical Soc
publisher.none.fl_str_mv Amer Physical Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614243788259328
score 13.070432