Modeling dust and soluble iron deposition to the South Atlantic Ocean

Autores
Johnson, Matthew S.; Meskhidze, Nicholas; Solmon, Fabien; Gassó, Santiago; Chuang, Patrick Y.; Gaiero, Diego Marcelo; Yantosca, Robert M.; Wu, Shiliang; Wang, Yuxuan; Carouge, Claire
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The global chemical transport model GEOS-Chem, implemented with a dust-iron dissolution scheme, was used to analyze the magnitude and spatial distribution of mineral dust and soluble-iron (sol-Fe) deposition to the South Atlantic Ocean (SAO). The comparison of model results with remotely sensed data shows that GEOS-Chem can capture dust source regions in Patagonia and characterize the temporal variability of dust outflow. For a year-long model simulation, 22 Tg of mineral dust and 4 Gg of sol-Fe were deposited to the surface waters of the entire SAO region, with roughly 30% of this dust and sol-Fe predicted to be deposited to possible high nitrate low chlorophyll oceanic regions. Model-predicted dissolved iron fraction of mineral dust over the SAO was small, on average only accounting for 0.57% of total iron. Simulations suggest that the primary reason for such a small fraction of sol-Fe is the low ambient concentrations of acidic trace gases available for mixing with dust plumes. Overall, the amount of acid added to the deliquesced aerosol solution was not enough to overcome the alkalinity buffer of Patagonian dust and initiate considerable acid dissolution of mineral-iron. Sensitivity studies show that the amount of sol-Fe deposited to the SAO was largely controlled by the initial amount of sol-Fe at the source region, with limited contribution from the spatial variability of Patagonian-desert topsoil mineralogy and natural sources of acidic trace gases. Simulations suggest that Patagonian dust should have a minor effect on biological productivity in the SAO.
Fil: Johnson, Matthew S.. North Carolina Sate University; Estados Unidos
Fil: Meskhidze, Nicholas. North Carolina Sate University; Estados Unidos
Fil: Solmon, Fabien. French National Center for Scientific Research; Francia
Fil: Gassó, Santiago. University of Maryland; Estados Unidos
Fil: Chuang, Patrick Y.. California State University; Estados Unidos
Fil: Gaiero, Diego Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Yantosca, Robert M.. Harvard University; Estados Unidos
Fil: Wu, Shiliang. Michigan Technological University; Estados Unidos
Fil: Wang, Yuxuan. Tsinghua University Beijing; China
Fil: Carouge, Claire. Harvard University; Estados Unidos
Materia
BIOLOGICAL PRODUCTIVITY
DISSOLVED IRON
DUST SOURCES
CHEMICAL TRANSPORT MODELS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54295

id CONICETDig_7fcea83cef19a5328ac70f4b626a456f
oai_identifier_str oai:ri.conicet.gov.ar:11336/54295
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling dust and soluble iron deposition to the South Atlantic OceanJohnson, Matthew S.Meskhidze, NicholasSolmon, FabienGassó, SantiagoChuang, Patrick Y.Gaiero, Diego MarceloYantosca, Robert M.Wu, ShiliangWang, YuxuanCarouge, ClaireBIOLOGICAL PRODUCTIVITYDISSOLVED IRONDUST SOURCESCHEMICAL TRANSPORT MODELShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The global chemical transport model GEOS-Chem, implemented with a dust-iron dissolution scheme, was used to analyze the magnitude and spatial distribution of mineral dust and soluble-iron (sol-Fe) deposition to the South Atlantic Ocean (SAO). The comparison of model results with remotely sensed data shows that GEOS-Chem can capture dust source regions in Patagonia and characterize the temporal variability of dust outflow. For a year-long model simulation, 22 Tg of mineral dust and 4 Gg of sol-Fe were deposited to the surface waters of the entire SAO region, with roughly 30% of this dust and sol-Fe predicted to be deposited to possible high nitrate low chlorophyll oceanic regions. Model-predicted dissolved iron fraction of mineral dust over the SAO was small, on average only accounting for 0.57% of total iron. Simulations suggest that the primary reason for such a small fraction of sol-Fe is the low ambient concentrations of acidic trace gases available for mixing with dust plumes. Overall, the amount of acid added to the deliquesced aerosol solution was not enough to overcome the alkalinity buffer of Patagonian dust and initiate considerable acid dissolution of mineral-iron. Sensitivity studies show that the amount of sol-Fe deposited to the SAO was largely controlled by the initial amount of sol-Fe at the source region, with limited contribution from the spatial variability of Patagonian-desert topsoil mineralogy and natural sources of acidic trace gases. Simulations suggest that Patagonian dust should have a minor effect on biological productivity in the SAO.Fil: Johnson, Matthew S.. North Carolina Sate University; Estados UnidosFil: Meskhidze, Nicholas. North Carolina Sate University; Estados UnidosFil: Solmon, Fabien. French National Center for Scientific Research; FranciaFil: Gassó, Santiago. University of Maryland; Estados UnidosFil: Chuang, Patrick Y.. California State University; Estados UnidosFil: Gaiero, Diego Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Yantosca, Robert M.. Harvard University; Estados UnidosFil: Wu, Shiliang. Michigan Technological University; Estados UnidosFil: Wang, Yuxuan. Tsinghua University Beijing; ChinaFil: Carouge, Claire. Harvard University; Estados UnidosAmerican Geophysical Union2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54295Johnson, Matthew S.; Meskhidze, Nicholas; Solmon, Fabien; Gassó, Santiago; Chuang, Patrick Y.; et al.; Modeling dust and soluble iron deposition to the South Atlantic Ocean; American Geophysical Union; Journal of Geophysical Research; 115; 15; 6-20100148-02272156-2202CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JD013311info:eu-repo/semantics/altIdentifier/doi/10.1029/2009JD013311info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:54:42Zoai:ri.conicet.gov.ar:11336/54295instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:54:42.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling dust and soluble iron deposition to the South Atlantic Ocean
title Modeling dust and soluble iron deposition to the South Atlantic Ocean
spellingShingle Modeling dust and soluble iron deposition to the South Atlantic Ocean
Johnson, Matthew S.
BIOLOGICAL PRODUCTIVITY
DISSOLVED IRON
DUST SOURCES
CHEMICAL TRANSPORT MODELS
title_short Modeling dust and soluble iron deposition to the South Atlantic Ocean
title_full Modeling dust and soluble iron deposition to the South Atlantic Ocean
title_fullStr Modeling dust and soluble iron deposition to the South Atlantic Ocean
title_full_unstemmed Modeling dust and soluble iron deposition to the South Atlantic Ocean
title_sort Modeling dust and soluble iron deposition to the South Atlantic Ocean
dc.creator.none.fl_str_mv Johnson, Matthew S.
Meskhidze, Nicholas
Solmon, Fabien
Gassó, Santiago
Chuang, Patrick Y.
Gaiero, Diego Marcelo
Yantosca, Robert M.
Wu, Shiliang
Wang, Yuxuan
Carouge, Claire
author Johnson, Matthew S.
author_facet Johnson, Matthew S.
Meskhidze, Nicholas
Solmon, Fabien
Gassó, Santiago
Chuang, Patrick Y.
Gaiero, Diego Marcelo
Yantosca, Robert M.
Wu, Shiliang
Wang, Yuxuan
Carouge, Claire
author_role author
author2 Meskhidze, Nicholas
Solmon, Fabien
Gassó, Santiago
Chuang, Patrick Y.
Gaiero, Diego Marcelo
Yantosca, Robert M.
Wu, Shiliang
Wang, Yuxuan
Carouge, Claire
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BIOLOGICAL PRODUCTIVITY
DISSOLVED IRON
DUST SOURCES
CHEMICAL TRANSPORT MODELS
topic BIOLOGICAL PRODUCTIVITY
DISSOLVED IRON
DUST SOURCES
CHEMICAL TRANSPORT MODELS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The global chemical transport model GEOS-Chem, implemented with a dust-iron dissolution scheme, was used to analyze the magnitude and spatial distribution of mineral dust and soluble-iron (sol-Fe) deposition to the South Atlantic Ocean (SAO). The comparison of model results with remotely sensed data shows that GEOS-Chem can capture dust source regions in Patagonia and characterize the temporal variability of dust outflow. For a year-long model simulation, 22 Tg of mineral dust and 4 Gg of sol-Fe were deposited to the surface waters of the entire SAO region, with roughly 30% of this dust and sol-Fe predicted to be deposited to possible high nitrate low chlorophyll oceanic regions. Model-predicted dissolved iron fraction of mineral dust over the SAO was small, on average only accounting for 0.57% of total iron. Simulations suggest that the primary reason for such a small fraction of sol-Fe is the low ambient concentrations of acidic trace gases available for mixing with dust plumes. Overall, the amount of acid added to the deliquesced aerosol solution was not enough to overcome the alkalinity buffer of Patagonian dust and initiate considerable acid dissolution of mineral-iron. Sensitivity studies show that the amount of sol-Fe deposited to the SAO was largely controlled by the initial amount of sol-Fe at the source region, with limited contribution from the spatial variability of Patagonian-desert topsoil mineralogy and natural sources of acidic trace gases. Simulations suggest that Patagonian dust should have a minor effect on biological productivity in the SAO.
Fil: Johnson, Matthew S.. North Carolina Sate University; Estados Unidos
Fil: Meskhidze, Nicholas. North Carolina Sate University; Estados Unidos
Fil: Solmon, Fabien. French National Center for Scientific Research; Francia
Fil: Gassó, Santiago. University of Maryland; Estados Unidos
Fil: Chuang, Patrick Y.. California State University; Estados Unidos
Fil: Gaiero, Diego Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Yantosca, Robert M.. Harvard University; Estados Unidos
Fil: Wu, Shiliang. Michigan Technological University; Estados Unidos
Fil: Wang, Yuxuan. Tsinghua University Beijing; China
Fil: Carouge, Claire. Harvard University; Estados Unidos
description The global chemical transport model GEOS-Chem, implemented with a dust-iron dissolution scheme, was used to analyze the magnitude and spatial distribution of mineral dust and soluble-iron (sol-Fe) deposition to the South Atlantic Ocean (SAO). The comparison of model results with remotely sensed data shows that GEOS-Chem can capture dust source regions in Patagonia and characterize the temporal variability of dust outflow. For a year-long model simulation, 22 Tg of mineral dust and 4 Gg of sol-Fe were deposited to the surface waters of the entire SAO region, with roughly 30% of this dust and sol-Fe predicted to be deposited to possible high nitrate low chlorophyll oceanic regions. Model-predicted dissolved iron fraction of mineral dust over the SAO was small, on average only accounting for 0.57% of total iron. Simulations suggest that the primary reason for such a small fraction of sol-Fe is the low ambient concentrations of acidic trace gases available for mixing with dust plumes. Overall, the amount of acid added to the deliquesced aerosol solution was not enough to overcome the alkalinity buffer of Patagonian dust and initiate considerable acid dissolution of mineral-iron. Sensitivity studies show that the amount of sol-Fe deposited to the SAO was largely controlled by the initial amount of sol-Fe at the source region, with limited contribution from the spatial variability of Patagonian-desert topsoil mineralogy and natural sources of acidic trace gases. Simulations suggest that Patagonian dust should have a minor effect on biological productivity in the SAO.
publishDate 2010
dc.date.none.fl_str_mv 2010-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54295
Johnson, Matthew S.; Meskhidze, Nicholas; Solmon, Fabien; Gassó, Santiago; Chuang, Patrick Y.; et al.; Modeling dust and soluble iron deposition to the South Atlantic Ocean; American Geophysical Union; Journal of Geophysical Research; 115; 15; 6-2010
0148-0227
2156-2202
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54295
identifier_str_mv Johnson, Matthew S.; Meskhidze, Nicholas; Solmon, Fabien; Gassó, Santiago; Chuang, Patrick Y.; et al.; Modeling dust and soluble iron deposition to the South Atlantic Ocean; American Geophysical Union; Journal of Geophysical Research; 115; 15; 6-2010
0148-0227
2156-2202
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JD013311
info:eu-repo/semantics/altIdentifier/doi/10.1029/2009JD013311
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782246724304896
score 12.928904