An h-Adaptive Solution of the Spherical Blast Wave Problem

Autores
Rios Rodriguez, Gustavo Adolfo; Storti, Mario Alberto; Lopez, Ezequiel Jose; Sarraf, Sofia Soledad
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Shock waves and contact discontinuities usually appear in compressible flows, requiring a fine mesh in order to achieve an acceptable accuracy of the numerical solution. The usage of a mesh adaptation strategy is convenient as uniform refinement of the whole mesh becomes prohibitive in three-dimensional (3D) problems. An unsteady h-adaptive strategy for unstructured finite element meshes is introduced. Non-conformity of the refined mesh and a bounded decrease in the geometrical quality of the elements are some features of the refinement algorithm. A 3D extension of the well-known refinement constraint for 2D meshes is used to enforce a smooth size transition among neighbour elements with different levels of refinement. A density-based gradient indicator is used to track discontinuities. The solution procedure is partially parallelised, i.e. the inviscid flow equations are solved in parallel with a finite element SUPG formulation with shock capturing terms while the adaptation of the mesh is sequentially performed. Results are presented for a spherical blast wave driven by a point-like explosion with an initial pressure jump of 105 atmospheres. The adapted solution is compared to that computed on a fixed mesh. Also, the results provided by the theory of self-similar solutions are considered for the analysis. In this particular problem, adapting the mesh to the solution accounts for approximately 4% of the total simulation time and the refinement algorithm scales almost linearly with the size of the problem.
Fil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Materia
Mecánica de Fluidos Computacional
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12926

id CONICETDig_7fc8e447eae9d535020c219de559ae49
oai_identifier_str oai:ri.conicet.gov.ar:11336/12926
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An h-Adaptive Solution of the Spherical Blast Wave ProblemRios Rodriguez, Gustavo AdolfoStorti, Mario AlbertoLopez, Ezequiel JoseSarraf, Sofia SoledadMecánica de Fluidos Computacionalhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Shock waves and contact discontinuities usually appear in compressible flows, requiring a fine mesh in order to achieve an acceptable accuracy of the numerical solution. The usage of a mesh adaptation strategy is convenient as uniform refinement of the whole mesh becomes prohibitive in three-dimensional (3D) problems. An unsteady h-adaptive strategy for unstructured finite element meshes is introduced. Non-conformity of the refined mesh and a bounded decrease in the geometrical quality of the elements are some features of the refinement algorithm. A 3D extension of the well-known refinement constraint for 2D meshes is used to enforce a smooth size transition among neighbour elements with different levels of refinement. A density-based gradient indicator is used to track discontinuities. The solution procedure is partially parallelised, i.e. the inviscid flow equations are solved in parallel with a finite element SUPG formulation with shock capturing terms while the adaptation of the mesh is sequentially performed. Results are presented for a spherical blast wave driven by a point-like explosion with an initial pressure jump of 105 atmospheres. The adapted solution is compared to that computed on a fixed mesh. Also, the results provided by the theory of self-similar solutions are considered for the analysis. In this particular problem, adapting the mesh to the solution accounts for approximately 4% of the total simulation time and the refinement algorithm scales almost linearly with the size of the problem.Fil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; ArgentinaTaylor & Francis Ltd2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12926Rios Rodriguez, Gustavo Adolfo; Storti, Mario Alberto; Lopez, Ezequiel Jose; Sarraf, Sofia Soledad; An h-Adaptive Solution of the Spherical Blast Wave Problem; Taylor & Francis Ltd; International Journal Of Computational Fluid Dynamics; 25; 1; 2-2011; 31-391061-8562enginfo:eu-repo/semantics/altIdentifier/doi/10.1080/10618562.2010.543418info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/10618562.2010.543418info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:35Zoai:ri.conicet.gov.ar:11336/12926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:35.318CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An h-Adaptive Solution of the Spherical Blast Wave Problem
title An h-Adaptive Solution of the Spherical Blast Wave Problem
spellingShingle An h-Adaptive Solution of the Spherical Blast Wave Problem
Rios Rodriguez, Gustavo Adolfo
Mecánica de Fluidos Computacional
title_short An h-Adaptive Solution of the Spherical Blast Wave Problem
title_full An h-Adaptive Solution of the Spherical Blast Wave Problem
title_fullStr An h-Adaptive Solution of the Spherical Blast Wave Problem
title_full_unstemmed An h-Adaptive Solution of the Spherical Blast Wave Problem
title_sort An h-Adaptive Solution of the Spherical Blast Wave Problem
dc.creator.none.fl_str_mv Rios Rodriguez, Gustavo Adolfo
Storti, Mario Alberto
Lopez, Ezequiel Jose
Sarraf, Sofia Soledad
author Rios Rodriguez, Gustavo Adolfo
author_facet Rios Rodriguez, Gustavo Adolfo
Storti, Mario Alberto
Lopez, Ezequiel Jose
Sarraf, Sofia Soledad
author_role author
author2 Storti, Mario Alberto
Lopez, Ezequiel Jose
Sarraf, Sofia Soledad
author2_role author
author
author
dc.subject.none.fl_str_mv Mecánica de Fluidos Computacional
topic Mecánica de Fluidos Computacional
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Shock waves and contact discontinuities usually appear in compressible flows, requiring a fine mesh in order to achieve an acceptable accuracy of the numerical solution. The usage of a mesh adaptation strategy is convenient as uniform refinement of the whole mesh becomes prohibitive in three-dimensional (3D) problems. An unsteady h-adaptive strategy for unstructured finite element meshes is introduced. Non-conformity of the refined mesh and a bounded decrease in the geometrical quality of the elements are some features of the refinement algorithm. A 3D extension of the well-known refinement constraint for 2D meshes is used to enforce a smooth size transition among neighbour elements with different levels of refinement. A density-based gradient indicator is used to track discontinuities. The solution procedure is partially parallelised, i.e. the inviscid flow equations are solved in parallel with a finite element SUPG formulation with shock capturing terms while the adaptation of the mesh is sequentially performed. Results are presented for a spherical blast wave driven by a point-like explosion with an initial pressure jump of 105 atmospheres. The adapted solution is compared to that computed on a fixed mesh. Also, the results provided by the theory of self-similar solutions are considered for the analysis. In this particular problem, adapting the mesh to the solution accounts for approximately 4% of the total simulation time and the refinement algorithm scales almost linearly with the size of the problem.
Fil: Rios Rodriguez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Storti, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Lopez, Ezequiel Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Sarraf, Sofia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina
description Shock waves and contact discontinuities usually appear in compressible flows, requiring a fine mesh in order to achieve an acceptable accuracy of the numerical solution. The usage of a mesh adaptation strategy is convenient as uniform refinement of the whole mesh becomes prohibitive in three-dimensional (3D) problems. An unsteady h-adaptive strategy for unstructured finite element meshes is introduced. Non-conformity of the refined mesh and a bounded decrease in the geometrical quality of the elements are some features of the refinement algorithm. A 3D extension of the well-known refinement constraint for 2D meshes is used to enforce a smooth size transition among neighbour elements with different levels of refinement. A density-based gradient indicator is used to track discontinuities. The solution procedure is partially parallelised, i.e. the inviscid flow equations are solved in parallel with a finite element SUPG formulation with shock capturing terms while the adaptation of the mesh is sequentially performed. Results are presented for a spherical blast wave driven by a point-like explosion with an initial pressure jump of 105 atmospheres. The adapted solution is compared to that computed on a fixed mesh. Also, the results provided by the theory of self-similar solutions are considered for the analysis. In this particular problem, adapting the mesh to the solution accounts for approximately 4% of the total simulation time and the refinement algorithm scales almost linearly with the size of the problem.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12926
Rios Rodriguez, Gustavo Adolfo; Storti, Mario Alberto; Lopez, Ezequiel Jose; Sarraf, Sofia Soledad; An h-Adaptive Solution of the Spherical Blast Wave Problem; Taylor & Francis Ltd; International Journal Of Computational Fluid Dynamics; 25; 1; 2-2011; 31-39
1061-8562
url http://hdl.handle.net/11336/12926
identifier_str_mv Rios Rodriguez, Gustavo Adolfo; Storti, Mario Alberto; Lopez, Ezequiel Jose; Sarraf, Sofia Soledad; An h-Adaptive Solution of the Spherical Blast Wave Problem; Taylor & Francis Ltd; International Journal Of Computational Fluid Dynamics; 25; 1; 2-2011; 31-39
1061-8562
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/10618562.2010.543418
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/10618562.2010.543418
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614149521276928
score 13.070432