Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
- Autores
- Manzoni, Stefano; Piñeiro, Gervasio; Jackson, Robert B.; Jobbagy Gampel, Esteban Gabriel; Kim, John H.; Porporato, Amilcare
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (kapp) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R2 ¼ 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R2 ¼ 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single ‘best’ model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate.
Fil: Manzoni, Stefano. University Of Duke. Nicholas School Of Environment; Estados Unidos
Fil: Piñeiro, Gervasio. University Of Duke. Nicholas School Of Environment; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Jackson, Robert B.. University Of Duke. Nicholas School Of Environment; Estados Unidos
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina
Fil: Kim, John H.. University Of Duke; Estados Unidos
Fil: Porporato, Amilcare. University Of Duke. Nicholas School Of Environment; Estados Unidos - Materia
-
Biogeochemistry
Organic Carbon
Decay Rate
Decomposition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16889
Ver los metadatos del registro completo
id |
CONICETDig_7f77b3585b6d2ee313e5d1046693bdd4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16889 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay ratesManzoni, StefanoPiñeiro, GervasioJackson, Robert B.Jobbagy Gampel, Esteban GabrielKim, John H.Porporato, AmilcareBiogeochemistryOrganic CarbonDecay RateDecompositionhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (kapp) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R2 ¼ 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R2 ¼ 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single ‘best’ model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate.Fil: Manzoni, Stefano. University Of Duke. Nicholas School Of Environment; Estados UnidosFil: Piñeiro, Gervasio. University Of Duke. Nicholas School Of Environment; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Jackson, Robert B.. University Of Duke. Nicholas School Of Environment; Estados UnidosFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; ArgentinaFil: Kim, John H.. University Of Duke; Estados UnidosFil: Porporato, Amilcare. University Of Duke. Nicholas School Of Environment; Estados UnidosElsevier2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16889Manzoni, Stefano; Piñeiro, Gervasio; Jackson, Robert B.; Jobbagy Gampel, Esteban Gabriel; Kim, John H.; et al.; Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates; Elsevier; Soil Biology And Biochemistry; 50; 7-2012; 66-760038-0717enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.soilbio.2012.02.029info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0038071712000946info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:07Zoai:ri.conicet.gov.ar:11336/16889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:07.714CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates |
title |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates |
spellingShingle |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates Manzoni, Stefano Biogeochemistry Organic Carbon Decay Rate Decomposition |
title_short |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates |
title_full |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates |
title_fullStr |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates |
title_full_unstemmed |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates |
title_sort |
Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates |
dc.creator.none.fl_str_mv |
Manzoni, Stefano Piñeiro, Gervasio Jackson, Robert B. Jobbagy Gampel, Esteban Gabriel Kim, John H. Porporato, Amilcare |
author |
Manzoni, Stefano |
author_facet |
Manzoni, Stefano Piñeiro, Gervasio Jackson, Robert B. Jobbagy Gampel, Esteban Gabriel Kim, John H. Porporato, Amilcare |
author_role |
author |
author2 |
Piñeiro, Gervasio Jackson, Robert B. Jobbagy Gampel, Esteban Gabriel Kim, John H. Porporato, Amilcare |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Biogeochemistry Organic Carbon Decay Rate Decomposition |
topic |
Biogeochemistry Organic Carbon Decay Rate Decomposition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (kapp) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R2 ¼ 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R2 ¼ 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single ‘best’ model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate. Fil: Manzoni, Stefano. University Of Duke. Nicholas School Of Environment; Estados Unidos Fil: Piñeiro, Gervasio. University Of Duke. Nicholas School Of Environment; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Jackson, Robert B.. University Of Duke. Nicholas School Of Environment; Estados Unidos Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina Fil: Kim, John H.. University Of Duke; Estados Unidos Fil: Porporato, Amilcare. University Of Duke. Nicholas School Of Environment; Estados Unidos |
description |
Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (kapp) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R2 ¼ 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R2 ¼ 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single ‘best’ model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16889 Manzoni, Stefano; Piñeiro, Gervasio; Jackson, Robert B.; Jobbagy Gampel, Esteban Gabriel; Kim, John H.; et al.; Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates; Elsevier; Soil Biology And Biochemistry; 50; 7-2012; 66-76 0038-0717 |
url |
http://hdl.handle.net/11336/16889 |
identifier_str_mv |
Manzoni, Stefano; Piñeiro, Gervasio; Jackson, Robert B.; Jobbagy Gampel, Esteban Gabriel; Kim, John H.; et al.; Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates; Elsevier; Soil Biology And Biochemistry; 50; 7-2012; 66-76 0038-0717 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.soilbio.2012.02.029 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0038071712000946 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268775364165632 |
score |
13.13397 |