Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates

Autores
Manzoni, Stefano; Piñeiro, Gervasio; Jackson, Robert B.; Jobbagy Gampel, Esteban Gabriel; Kim, John H.; Porporato, Amilcare
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (kapp) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R2 ¼ 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R2 ¼ 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single ‘best’ model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate.
Fil: Manzoni, Stefano. University Of Duke. Nicholas School Of Environment; Estados Unidos
Fil: Piñeiro, Gervasio. University Of Duke. Nicholas School Of Environment; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Jackson, Robert B.. University Of Duke. Nicholas School Of Environment; Estados Unidos
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina
Fil: Kim, John H.. University Of Duke; Estados Unidos
Fil: Porporato, Amilcare. University Of Duke. Nicholas School Of Environment; Estados Unidos
Materia
Biogeochemistry
Organic Carbon
Decay Rate
Decomposition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16889

id CONICETDig_7f77b3585b6d2ee313e5d1046693bdd4
oai_identifier_str oai:ri.conicet.gov.ar:11336/16889
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay ratesManzoni, StefanoPiñeiro, GervasioJackson, Robert B.Jobbagy Gampel, Esteban GabrielKim, John H.Porporato, AmilcareBiogeochemistryOrganic CarbonDecay RateDecompositionhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (kapp) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R2 ¼ 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R2 ¼ 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single ‘best’ model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate.Fil: Manzoni, Stefano. University Of Duke. Nicholas School Of Environment; Estados UnidosFil: Piñeiro, Gervasio. University Of Duke. Nicholas School Of Environment; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Jackson, Robert B.. University Of Duke. Nicholas School Of Environment; Estados UnidosFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; ArgentinaFil: Kim, John H.. University Of Duke; Estados UnidosFil: Porporato, Amilcare. University Of Duke. Nicholas School Of Environment; Estados UnidosElsevier2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16889Manzoni, Stefano; Piñeiro, Gervasio; Jackson, Robert B.; Jobbagy Gampel, Esteban Gabriel; Kim, John H.; et al.; Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates; Elsevier; Soil Biology And Biochemistry; 50; 7-2012; 66-760038-0717enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.soilbio.2012.02.029info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0038071712000946info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:07Zoai:ri.conicet.gov.ar:11336/16889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:07.714CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
title Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
spellingShingle Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
Manzoni, Stefano
Biogeochemistry
Organic Carbon
Decay Rate
Decomposition
title_short Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
title_full Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
title_fullStr Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
title_full_unstemmed Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
title_sort Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates
dc.creator.none.fl_str_mv Manzoni, Stefano
Piñeiro, Gervasio
Jackson, Robert B.
Jobbagy Gampel, Esteban Gabriel
Kim, John H.
Porporato, Amilcare
author Manzoni, Stefano
author_facet Manzoni, Stefano
Piñeiro, Gervasio
Jackson, Robert B.
Jobbagy Gampel, Esteban Gabriel
Kim, John H.
Porporato, Amilcare
author_role author
author2 Piñeiro, Gervasio
Jackson, Robert B.
Jobbagy Gampel, Esteban Gabriel
Kim, John H.
Porporato, Amilcare
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Biogeochemistry
Organic Carbon
Decay Rate
Decomposition
topic Biogeochemistry
Organic Carbon
Decay Rate
Decomposition
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (kapp) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R2 ¼ 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R2 ¼ 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single ‘best’ model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate.
Fil: Manzoni, Stefano. University Of Duke. Nicholas School Of Environment; Estados Unidos
Fil: Piñeiro, Gervasio. University Of Duke. Nicholas School Of Environment; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Jackson, Robert B.. University Of Duke. Nicholas School Of Environment; Estados Unidos
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina
Fil: Kim, John H.. University Of Duke; Estados Unidos
Fil: Porporato, Amilcare. University Of Duke. Nicholas School Of Environment; Estados Unidos
description Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon (C) in surface litter and soil organic matter (SOM). Long-term decomposition may be suitably analyzed by linear models (i.e., all fluxes defined by first-order kinetics), which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate (kapp) through time. Here we compare eight linear models (four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates) and report their analytical solutions for two types of decomposition experiments: i) studies that evaluate the decomposition of a single input of fresh litter (i.e., a single cohort, as in litterbag and C labeling experiments), and ii) studies that evaluate the decomposition of soil samples with compounds of different ages (i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments). We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony (R2 ¼ 0.99, lowest Akaike and Bayesian information criteria), while for multiple-cohort data the two-pool models tend to perform better (R2 ¼ 0.96), perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single ‘best’ model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate.
publishDate 2012
dc.date.none.fl_str_mv 2012-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16889
Manzoni, Stefano; Piñeiro, Gervasio; Jackson, Robert B.; Jobbagy Gampel, Esteban Gabriel; Kim, John H.; et al.; Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates; Elsevier; Soil Biology And Biochemistry; 50; 7-2012; 66-76
0038-0717
url http://hdl.handle.net/11336/16889
identifier_str_mv Manzoni, Stefano; Piñeiro, Gervasio; Jackson, Robert B.; Jobbagy Gampel, Esteban Gabriel; Kim, John H.; et al.; Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates; Elsevier; Soil Biology And Biochemistry; 50; 7-2012; 66-76
0038-0717
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.soilbio.2012.02.029
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0038071712000946
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268775364165632
score 13.13397