Hamiltonian formalism for f (T) gravity

Autores
Ferraro, Rafael; Guzmán Monsalve, María José
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present the Hamiltonian formalism for f(T) gravity, and prove that the theory has n(n−3)/2+1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalarfield minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the superHamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n(n−1)/2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n(n−1)/2−1 first-class constraints, while one of them becomessecond class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈ 0 to remove one d.o.f. from the n^2+1 pairs of canonical variables. The remaining n(n−1)/2+2n−1 primary constraints remove the same number of d.o.f., leaving the theory with n(n−3)/2+1 d.o.f. This means that f(T) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.
Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Guzmán Monsalve, María José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
Modified Gravity
Teleparallelism
Degrees of Freedom
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80574

id CONICETDig_7eeac41d89a3e300691026cc28c457c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/80574
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hamiltonian formalism for f (T) gravityFerraro, RafaelGuzmán Monsalve, María JoséModified GravityTeleparallelismDegrees of Freedomhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present the Hamiltonian formalism for f(T) gravity, and prove that the theory has n(n−3)/2+1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalarfield minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the superHamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n(n−1)/2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n(n−1)/2−1 first-class constraints, while one of them becomessecond class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈ 0 to remove one d.o.f. from the n^2+1 pairs of canonical variables. The remaining n(n−1)/2+2n−1 primary constraints remove the same number of d.o.f., leaving the theory with n(n−3)/2+1 d.o.f. This means that f(T) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Guzmán Monsalve, María José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaAmerican Physical Society2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80574Ferraro, Rafael; Guzmán Monsalve, María José; Hamiltonian formalism for f (T) gravity; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-162470-0010CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.97.104028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:49Zoai:ri.conicet.gov.ar:11336/80574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:49.725CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hamiltonian formalism for f (T) gravity
title Hamiltonian formalism for f (T) gravity
spellingShingle Hamiltonian formalism for f (T) gravity
Ferraro, Rafael
Modified Gravity
Teleparallelism
Degrees of Freedom
title_short Hamiltonian formalism for f (T) gravity
title_full Hamiltonian formalism for f (T) gravity
title_fullStr Hamiltonian formalism for f (T) gravity
title_full_unstemmed Hamiltonian formalism for f (T) gravity
title_sort Hamiltonian formalism for f (T) gravity
dc.creator.none.fl_str_mv Ferraro, Rafael
Guzmán Monsalve, María José
author Ferraro, Rafael
author_facet Ferraro, Rafael
Guzmán Monsalve, María José
author_role author
author2 Guzmán Monsalve, María José
author2_role author
dc.subject.none.fl_str_mv Modified Gravity
Teleparallelism
Degrees of Freedom
topic Modified Gravity
Teleparallelism
Degrees of Freedom
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present the Hamiltonian formalism for f(T) gravity, and prove that the theory has n(n−3)/2+1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalarfield minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the superHamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n(n−1)/2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n(n−1)/2−1 first-class constraints, while one of them becomessecond class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈ 0 to remove one d.o.f. from the n^2+1 pairs of canonical variables. The remaining n(n−1)/2+2n−1 primary constraints remove the same number of d.o.f., leaving the theory with n(n−3)/2+1 d.o.f. This means that f(T) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.
Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Guzmán Monsalve, María José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description We present the Hamiltonian formalism for f(T) gravity, and prove that the theory has n(n−3)/2+1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalarfield minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the superHamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n(n−1)/2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n(n−1)/2−1 first-class constraints, while one of them becomessecond class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈ 0 to remove one d.o.f. from the n^2+1 pairs of canonical variables. The remaining n(n−1)/2+2n−1 primary constraints remove the same number of d.o.f., leaving the theory with n(n−3)/2+1 d.o.f. This means that f(T) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80574
Ferraro, Rafael; Guzmán Monsalve, María José; Hamiltonian formalism for f (T) gravity; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-16
2470-0010
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80574
identifier_str_mv Ferraro, Rafael; Guzmán Monsalve, María José; Hamiltonian formalism for f (T) gravity; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-16
2470-0010
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.97.104028
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613566008655872
score 13.070432