Hamiltonian formalism for f (T) gravity
- Autores
- Ferraro, Rafael; Guzmán Monsalve, María José
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present the Hamiltonian formalism for f(T) gravity, and prove that the theory has n(n−3)/2+1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalarfield minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the superHamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n(n−1)/2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n(n−1)/2−1 first-class constraints, while one of them becomessecond class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈ 0 to remove one d.o.f. from the n^2+1 pairs of canonical variables. The remaining n(n−1)/2+2n−1 primary constraints remove the same number of d.o.f., leaving the theory with n(n−3)/2+1 d.o.f. This means that f(T) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.
Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Guzmán Monsalve, María José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
Modified Gravity
Teleparallelism
Degrees of Freedom - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80574
Ver los metadatos del registro completo
id |
CONICETDig_7eeac41d89a3e300691026cc28c457c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80574 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hamiltonian formalism for f (T) gravityFerraro, RafaelGuzmán Monsalve, María JoséModified GravityTeleparallelismDegrees of Freedomhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present the Hamiltonian formalism for f(T) gravity, and prove that the theory has n(n−3)/2+1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalarfield minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the superHamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n(n−1)/2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n(n−1)/2−1 first-class constraints, while one of them becomessecond class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈ 0 to remove one d.o.f. from the n^2+1 pairs of canonical variables. The remaining n(n−1)/2+2n−1 primary constraints remove the same number of d.o.f., leaving the theory with n(n−3)/2+1 d.o.f. This means that f(T) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Guzmán Monsalve, María José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaAmerican Physical Society2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80574Ferraro, Rafael; Guzmán Monsalve, María José; Hamiltonian formalism for f (T) gravity; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-162470-0010CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.97.104028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:49Zoai:ri.conicet.gov.ar:11336/80574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:49.725CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hamiltonian formalism for f (T) gravity |
title |
Hamiltonian formalism for f (T) gravity |
spellingShingle |
Hamiltonian formalism for f (T) gravity Ferraro, Rafael Modified Gravity Teleparallelism Degrees of Freedom |
title_short |
Hamiltonian formalism for f (T) gravity |
title_full |
Hamiltonian formalism for f (T) gravity |
title_fullStr |
Hamiltonian formalism for f (T) gravity |
title_full_unstemmed |
Hamiltonian formalism for f (T) gravity |
title_sort |
Hamiltonian formalism for f (T) gravity |
dc.creator.none.fl_str_mv |
Ferraro, Rafael Guzmán Monsalve, María José |
author |
Ferraro, Rafael |
author_facet |
Ferraro, Rafael Guzmán Monsalve, María José |
author_role |
author |
author2 |
Guzmán Monsalve, María José |
author2_role |
author |
dc.subject.none.fl_str_mv |
Modified Gravity Teleparallelism Degrees of Freedom |
topic |
Modified Gravity Teleparallelism Degrees of Freedom |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present the Hamiltonian formalism for f(T) gravity, and prove that the theory has n(n−3)/2+1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalarfield minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the superHamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n(n−1)/2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n(n−1)/2−1 first-class constraints, while one of them becomessecond class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈ 0 to remove one d.o.f. from the n^2+1 pairs of canonical variables. The remaining n(n−1)/2+2n−1 primary constraints remove the same number of d.o.f., leaving the theory with n(n−3)/2+1 d.o.f. This means that f(T) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f. Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Guzmán Monsalve, María José. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
We present the Hamiltonian formalism for f(T) gravity, and prove that the theory has n(n−3)/2+1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalarfield minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the superHamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n(n−1)/2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n(n−1)/2−1 first-class constraints, while one of them becomessecond class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈ 0 to remove one d.o.f. from the n^2+1 pairs of canonical variables. The remaining n(n−1)/2+2n−1 primary constraints remove the same number of d.o.f., leaving the theory with n(n−3)/2+1 d.o.f. This means that f(T) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80574 Ferraro, Rafael; Guzmán Monsalve, María José; Hamiltonian formalism for f (T) gravity; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-16 2470-0010 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80574 |
identifier_str_mv |
Ferraro, Rafael; Guzmán Monsalve, María José; Hamiltonian formalism for f (T) gravity; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-16 2470-0010 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.97.104028 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613566008655872 |
score |
13.070432 |