A synthesis of evidence for policy from behavioural science during COVID-19
- Autores
- Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; Ellemers, Naomi; Cichocka, Aleksandra; Douglas, Karen M.; Rand, David G.; van der Linden, Sander; Cikara, Mina; Finkel, Eli J.; Druckman, James N.; Wohl, Michael J. A.; Petty, Richard E.; Tucker, Joshua A.; Shariff, Azim; Gelfand, Michele; Packer, Dominic; Jetten, Jolanda; Van Lange, Paul A. M.; Pennycook, Gordon; Peters, Ellen; Navajas Ahumada, Joaquin Mariano; Papa, Francesca; Galizzi, Matteo M.; Milkman, Katherine L.; Petrović, Marija; Van Bavel, Jay J.; Willer, Robb
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization.
Fil: Ruggeri, Kai. New York Air National Guard; Estados Unidos. Columbia University Mailman School of Public Health; Estados Unidos. University of Cambridge; Estados Unidos
Fil: Stock, Friederike. Max Planck Institute for Human Development; Alemania. Humboldt-Universität zu Berlin; Alemania
Fil: Haslam, S. Alexander. University of Queensland; Australia
Fil: Capraro, Valerio. Università degli Studi di Milano; Italia
Fil: Boggio, Paulo. Universidade Presbiteriana Mackenzie; Brasil. National Institute of Science and Technology on Social and Affective Neuroscience; Brasil
Fil: Ellemers, Naomi. Utrecht University; Países Bajos. University of Utrecht; Países Bajos
Fil: Cichocka, Aleksandra. University Of Kent; Reino Unido
Fil: Douglas, Karen M.. University Of Kent; Reino Unido
Fil: Rand, David G.. Massachusetts Institute of Technology; Estados Unidos
Fil: van der Linden, Sander. University of Cambridge; Estados Unidos
Fil: Cikara, Mina. Harvard University; Estados Unidos
Fil: Finkel, Eli J.. Northwestern University; Estados Unidos
Fil: Druckman, James N.. Northwestern University; Estados Unidos
Fil: Wohl, Michael J. A.. Carleton University; Canadá
Fil: Petty, Richard E.. Ohio State University; Estados Unidos
Fil: Tucker, Joshua A.. University of New York; Estados Unidos
Fil: Shariff, Azim. University of British Columbia; Canadá
Fil: Gelfand, Michele. University of Stanford; Estados Unidos
Fil: Packer, Dominic. Lehigh University; Estados Unidos
Fil: Jetten, Jolanda. University of Queensland; Australia
Fil: Van Lange, Paul A. M.. Universitat zu Köln; Alemania. Vrije Universiteit Amsterdam; Países Bajos
Fil: Pennycook, Gordon. Cornell University; Estados Unidos
Fil: Peters, Ellen. University of Oregon; Estados Unidos
Fil: Navajas Ahumada, Joaquin Mariano. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Papa, Francesca. Organisation for Economic Co-operation and Development; Francia
Fil: Galizzi, Matteo M.. The London School of Economics and Political Science; Reino Unido
Fil: Milkman, Katherine L.. University of Pennsylvania; Estados Unidos
Fil: Petrović, Marija. University of Belgrade; Serbia
Fil: Van Bavel, Jay J.. University of New York; Estados Unidos
Fil: Willer, Robb. University of Stanford; Estados Unidos - Materia
-
Policy recommendations
Public policy
Behavioural science
COVID-19 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/240189
Ver los metadatos del registro completo
id |
CONICETDig_7edde05e13c079a2c1c99a84bd04a723 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/240189 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A synthesis of evidence for policy from behavioural science during COVID-19Ruggeri, KaiStock, FriederikeHaslam, S. AlexanderCapraro, ValerioBoggio, PauloEllemers, NaomiCichocka, AleksandraDouglas, Karen M.Rand, David G.van der Linden, SanderCikara, MinaFinkel, Eli J.Druckman, James N.Wohl, Michael J. A.Petty, Richard E.Tucker, Joshua A.Shariff, AzimGelfand, MichelePacker, DominicJetten, JolandaVan Lange, Paul A. M.Pennycook, GordonPeters, EllenNavajas Ahumada, Joaquin MarianoPapa, FrancescaGalizzi, Matteo M.Milkman, Katherine L.Petrović, MarijaVan Bavel, Jay J.Willer, RobbPolicy recommendationsPublic policyBehavioural scienceCOVID-19https://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization.Fil: Ruggeri, Kai. New York Air National Guard; Estados Unidos. Columbia University Mailman School of Public Health; Estados Unidos. University of Cambridge; Estados UnidosFil: Stock, Friederike. Max Planck Institute for Human Development; Alemania. Humboldt-Universität zu Berlin; AlemaniaFil: Haslam, S. Alexander. University of Queensland; AustraliaFil: Capraro, Valerio. Università degli Studi di Milano; ItaliaFil: Boggio, Paulo. Universidade Presbiteriana Mackenzie; Brasil. National Institute of Science and Technology on Social and Affective Neuroscience; BrasilFil: Ellemers, Naomi. Utrecht University; Países Bajos. University of Utrecht; Países BajosFil: Cichocka, Aleksandra. University Of Kent; Reino UnidoFil: Douglas, Karen M.. University Of Kent; Reino UnidoFil: Rand, David G.. Massachusetts Institute of Technology; Estados UnidosFil: van der Linden, Sander. University of Cambridge; Estados UnidosFil: Cikara, Mina. Harvard University; Estados UnidosFil: Finkel, Eli J.. Northwestern University; Estados UnidosFil: Druckman, James N.. Northwestern University; Estados UnidosFil: Wohl, Michael J. A.. Carleton University; CanadáFil: Petty, Richard E.. Ohio State University; Estados UnidosFil: Tucker, Joshua A.. University of New York; Estados UnidosFil: Shariff, Azim. University of British Columbia; CanadáFil: Gelfand, Michele. University of Stanford; Estados UnidosFil: Packer, Dominic. Lehigh University; Estados UnidosFil: Jetten, Jolanda. University of Queensland; AustraliaFil: Van Lange, Paul A. M.. Universitat zu Köln; Alemania. Vrije Universiteit Amsterdam; Países BajosFil: Pennycook, Gordon. Cornell University; Estados UnidosFil: Peters, Ellen. University of Oregon; Estados UnidosFil: Navajas Ahumada, Joaquin Mariano. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Papa, Francesca. Organisation for Economic Co-operation and Development; FranciaFil: Galizzi, Matteo M.. The London School of Economics and Political Science; Reino UnidoFil: Milkman, Katherine L.. University of Pennsylvania; Estados UnidosFil: Petrović, Marija. University of Belgrade; SerbiaFil: Van Bavel, Jay J.. University of New York; Estados UnidosFil: Willer, Robb. University of Stanford; Estados UnidosNature Publishing Group2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240189Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; et al.; A synthesis of evidence for policy from behavioural science during COVID-19; Nature Publishing Group; Nature; 625; 7993; 1-2024; 134-1470028-0836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41586-023-06840-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:29Zoai:ri.conicet.gov.ar:11336/240189instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:30.022CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A synthesis of evidence for policy from behavioural science during COVID-19 |
title |
A synthesis of evidence for policy from behavioural science during COVID-19 |
spellingShingle |
A synthesis of evidence for policy from behavioural science during COVID-19 Ruggeri, Kai Policy recommendations Public policy Behavioural science COVID-19 |
title_short |
A synthesis of evidence for policy from behavioural science during COVID-19 |
title_full |
A synthesis of evidence for policy from behavioural science during COVID-19 |
title_fullStr |
A synthesis of evidence for policy from behavioural science during COVID-19 |
title_full_unstemmed |
A synthesis of evidence for policy from behavioural science during COVID-19 |
title_sort |
A synthesis of evidence for policy from behavioural science during COVID-19 |
dc.creator.none.fl_str_mv |
Ruggeri, Kai Stock, Friederike Haslam, S. Alexander Capraro, Valerio Boggio, Paulo Ellemers, Naomi Cichocka, Aleksandra Douglas, Karen M. Rand, David G. van der Linden, Sander Cikara, Mina Finkel, Eli J. Druckman, James N. Wohl, Michael J. A. Petty, Richard E. Tucker, Joshua A. Shariff, Azim Gelfand, Michele Packer, Dominic Jetten, Jolanda Van Lange, Paul A. M. Pennycook, Gordon Peters, Ellen Navajas Ahumada, Joaquin Mariano Papa, Francesca Galizzi, Matteo M. Milkman, Katherine L. Petrović, Marija Van Bavel, Jay J. Willer, Robb |
author |
Ruggeri, Kai |
author_facet |
Ruggeri, Kai Stock, Friederike Haslam, S. Alexander Capraro, Valerio Boggio, Paulo Ellemers, Naomi Cichocka, Aleksandra Douglas, Karen M. Rand, David G. van der Linden, Sander Cikara, Mina Finkel, Eli J. Druckman, James N. Wohl, Michael J. A. Petty, Richard E. Tucker, Joshua A. Shariff, Azim Gelfand, Michele Packer, Dominic Jetten, Jolanda Van Lange, Paul A. M. Pennycook, Gordon Peters, Ellen Navajas Ahumada, Joaquin Mariano Papa, Francesca Galizzi, Matteo M. Milkman, Katherine L. Petrović, Marija Van Bavel, Jay J. Willer, Robb |
author_role |
author |
author2 |
Stock, Friederike Haslam, S. Alexander Capraro, Valerio Boggio, Paulo Ellemers, Naomi Cichocka, Aleksandra Douglas, Karen M. Rand, David G. van der Linden, Sander Cikara, Mina Finkel, Eli J. Druckman, James N. Wohl, Michael J. A. Petty, Richard E. Tucker, Joshua A. Shariff, Azim Gelfand, Michele Packer, Dominic Jetten, Jolanda Van Lange, Paul A. M. Pennycook, Gordon Peters, Ellen Navajas Ahumada, Joaquin Mariano Papa, Francesca Galizzi, Matteo M. Milkman, Katherine L. Petrović, Marija Van Bavel, Jay J. Willer, Robb |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Policy recommendations Public policy Behavioural science COVID-19 |
topic |
Policy recommendations Public policy Behavioural science COVID-19 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.1 https://purl.org/becyt/ford/5 https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization. Fil: Ruggeri, Kai. New York Air National Guard; Estados Unidos. Columbia University Mailman School of Public Health; Estados Unidos. University of Cambridge; Estados Unidos Fil: Stock, Friederike. Max Planck Institute for Human Development; Alemania. Humboldt-Universität zu Berlin; Alemania Fil: Haslam, S. Alexander. University of Queensland; Australia Fil: Capraro, Valerio. Università degli Studi di Milano; Italia Fil: Boggio, Paulo. Universidade Presbiteriana Mackenzie; Brasil. National Institute of Science and Technology on Social and Affective Neuroscience; Brasil Fil: Ellemers, Naomi. Utrecht University; Países Bajos. University of Utrecht; Países Bajos Fil: Cichocka, Aleksandra. University Of Kent; Reino Unido Fil: Douglas, Karen M.. University Of Kent; Reino Unido Fil: Rand, David G.. Massachusetts Institute of Technology; Estados Unidos Fil: van der Linden, Sander. University of Cambridge; Estados Unidos Fil: Cikara, Mina. Harvard University; Estados Unidos Fil: Finkel, Eli J.. Northwestern University; Estados Unidos Fil: Druckman, James N.. Northwestern University; Estados Unidos Fil: Wohl, Michael J. A.. Carleton University; Canadá Fil: Petty, Richard E.. Ohio State University; Estados Unidos Fil: Tucker, Joshua A.. University of New York; Estados Unidos Fil: Shariff, Azim. University of British Columbia; Canadá Fil: Gelfand, Michele. University of Stanford; Estados Unidos Fil: Packer, Dominic. Lehigh University; Estados Unidos Fil: Jetten, Jolanda. University of Queensland; Australia Fil: Van Lange, Paul A. M.. Universitat zu Köln; Alemania. Vrije Universiteit Amsterdam; Países Bajos Fil: Pennycook, Gordon. Cornell University; Estados Unidos Fil: Peters, Ellen. University of Oregon; Estados Unidos Fil: Navajas Ahumada, Joaquin Mariano. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Papa, Francesca. Organisation for Economic Co-operation and Development; Francia Fil: Galizzi, Matteo M.. The London School of Economics and Political Science; Reino Unido Fil: Milkman, Katherine L.. University of Pennsylvania; Estados Unidos Fil: Petrović, Marija. University of Belgrade; Serbia Fil: Van Bavel, Jay J.. University of New York; Estados Unidos Fil: Willer, Robb. University of Stanford; Estados Unidos |
description |
Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/240189 Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; et al.; A synthesis of evidence for policy from behavioural science during COVID-19; Nature Publishing Group; Nature; 625; 7993; 1-2024; 134-147 0028-0836 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/240189 |
identifier_str_mv |
Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; et al.; A synthesis of evidence for policy from behavioural science during COVID-19; Nature Publishing Group; Nature; 625; 7993; 1-2024; 134-147 0028-0836 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41586-023-06840-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268975870771200 |
score |
13.13397 |