A synthesis of evidence for policy from behavioural science during COVID-19

Autores
Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; Ellemers, Naomi; Cichocka, Aleksandra; Douglas, Karen M.; Rand, David G.; van der Linden, Sander; Cikara, Mina; Finkel, Eli J.; Druckman, James N.; Wohl, Michael J. A.; Petty, Richard E.; Tucker, Joshua A.; Shariff, Azim; Gelfand, Michele; Packer, Dominic; Jetten, Jolanda; Van Lange, Paul A. M.; Pennycook, Gordon; Peters, Ellen; Navajas Ahumada, Joaquin Mariano; Papa, Francesca; Galizzi, Matteo M.; Milkman, Katherine L.; Petrović, Marija; Van Bavel, Jay J.; Willer, Robb
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization.
Fil: Ruggeri, Kai. New York Air National Guard; Estados Unidos. Columbia University Mailman School of Public Health; Estados Unidos. University of Cambridge; Estados Unidos
Fil: Stock, Friederike. Max Planck Institute for Human Development; Alemania. Humboldt-Universität zu Berlin; Alemania
Fil: Haslam, S. Alexander. University of Queensland; Australia
Fil: Capraro, Valerio. Università degli Studi di Milano; Italia
Fil: Boggio, Paulo. Universidade Presbiteriana Mackenzie; Brasil. National Institute of Science and Technology on Social and Affective Neuroscience; Brasil
Fil: Ellemers, Naomi. Utrecht University; Países Bajos. University of Utrecht; Países Bajos
Fil: Cichocka, Aleksandra. University Of Kent; Reino Unido
Fil: Douglas, Karen M.. University Of Kent; Reino Unido
Fil: Rand, David G.. Massachusetts Institute of Technology; Estados Unidos
Fil: van der Linden, Sander. University of Cambridge; Estados Unidos
Fil: Cikara, Mina. Harvard University; Estados Unidos
Fil: Finkel, Eli J.. Northwestern University; Estados Unidos
Fil: Druckman, James N.. Northwestern University; Estados Unidos
Fil: Wohl, Michael J. A.. Carleton University; Canadá
Fil: Petty, Richard E.. Ohio State University; Estados Unidos
Fil: Tucker, Joshua A.. University of New York; Estados Unidos
Fil: Shariff, Azim. University of British Columbia; Canadá
Fil: Gelfand, Michele. University of Stanford; Estados Unidos
Fil: Packer, Dominic. Lehigh University; Estados Unidos
Fil: Jetten, Jolanda. University of Queensland; Australia
Fil: Van Lange, Paul A. M.. Universitat zu Köln; Alemania. Vrije Universiteit Amsterdam; Países Bajos
Fil: Pennycook, Gordon. Cornell University; Estados Unidos
Fil: Peters, Ellen. University of Oregon; Estados Unidos
Fil: Navajas Ahumada, Joaquin Mariano. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Papa, Francesca. Organisation for Economic Co-operation and Development; Francia
Fil: Galizzi, Matteo M.. The London School of Economics and Political Science; Reino Unido
Fil: Milkman, Katherine L.. University of Pennsylvania; Estados Unidos
Fil: Petrović, Marija. University of Belgrade; Serbia
Fil: Van Bavel, Jay J.. University of New York; Estados Unidos
Fil: Willer, Robb. University of Stanford; Estados Unidos
Materia
Policy recommendations
Public policy
Behavioural science
COVID-19
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/240189

id CONICETDig_7edde05e13c079a2c1c99a84bd04a723
oai_identifier_str oai:ri.conicet.gov.ar:11336/240189
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A synthesis of evidence for policy from behavioural science during COVID-19Ruggeri, KaiStock, FriederikeHaslam, S. AlexanderCapraro, ValerioBoggio, PauloEllemers, NaomiCichocka, AleksandraDouglas, Karen M.Rand, David G.van der Linden, SanderCikara, MinaFinkel, Eli J.Druckman, James N.Wohl, Michael J. A.Petty, Richard E.Tucker, Joshua A.Shariff, AzimGelfand, MichelePacker, DominicJetten, JolandaVan Lange, Paul A. M.Pennycook, GordonPeters, EllenNavajas Ahumada, Joaquin MarianoPapa, FrancescaGalizzi, Matteo M.Milkman, Katherine L.Petrović, MarijaVan Bavel, Jay J.Willer, RobbPolicy recommendationsPublic policyBehavioural scienceCOVID-19https://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization.Fil: Ruggeri, Kai. New York Air National Guard; Estados Unidos. Columbia University Mailman School of Public Health; Estados Unidos. University of Cambridge; Estados UnidosFil: Stock, Friederike. Max Planck Institute for Human Development; Alemania. Humboldt-Universität zu Berlin; AlemaniaFil: Haslam, S. Alexander. University of Queensland; AustraliaFil: Capraro, Valerio. Università degli Studi di Milano; ItaliaFil: Boggio, Paulo. Universidade Presbiteriana Mackenzie; Brasil. National Institute of Science and Technology on Social and Affective Neuroscience; BrasilFil: Ellemers, Naomi. Utrecht University; Países Bajos. University of Utrecht; Países BajosFil: Cichocka, Aleksandra. University Of Kent; Reino UnidoFil: Douglas, Karen M.. University Of Kent; Reino UnidoFil: Rand, David G.. Massachusetts Institute of Technology; Estados UnidosFil: van der Linden, Sander. University of Cambridge; Estados UnidosFil: Cikara, Mina. Harvard University; Estados UnidosFil: Finkel, Eli J.. Northwestern University; Estados UnidosFil: Druckman, James N.. Northwestern University; Estados UnidosFil: Wohl, Michael J. A.. Carleton University; CanadáFil: Petty, Richard E.. Ohio State University; Estados UnidosFil: Tucker, Joshua A.. University of New York; Estados UnidosFil: Shariff, Azim. University of British Columbia; CanadáFil: Gelfand, Michele. University of Stanford; Estados UnidosFil: Packer, Dominic. Lehigh University; Estados UnidosFil: Jetten, Jolanda. University of Queensland; AustraliaFil: Van Lange, Paul A. M.. Universitat zu Köln; Alemania. Vrije Universiteit Amsterdam; Países BajosFil: Pennycook, Gordon. Cornell University; Estados UnidosFil: Peters, Ellen. University of Oregon; Estados UnidosFil: Navajas Ahumada, Joaquin Mariano. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Papa, Francesca. Organisation for Economic Co-operation and Development; FranciaFil: Galizzi, Matteo M.. The London School of Economics and Political Science; Reino UnidoFil: Milkman, Katherine L.. University of Pennsylvania; Estados UnidosFil: Petrović, Marija. University of Belgrade; SerbiaFil: Van Bavel, Jay J.. University of New York; Estados UnidosFil: Willer, Robb. University of Stanford; Estados UnidosNature Publishing Group2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240189Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; et al.; A synthesis of evidence for policy from behavioural science during COVID-19; Nature Publishing Group; Nature; 625; 7993; 1-2024; 134-1470028-0836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41586-023-06840-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:29Zoai:ri.conicet.gov.ar:11336/240189instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:30.022CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A synthesis of evidence for policy from behavioural science during COVID-19
title A synthesis of evidence for policy from behavioural science during COVID-19
spellingShingle A synthesis of evidence for policy from behavioural science during COVID-19
Ruggeri, Kai
Policy recommendations
Public policy
Behavioural science
COVID-19
title_short A synthesis of evidence for policy from behavioural science during COVID-19
title_full A synthesis of evidence for policy from behavioural science during COVID-19
title_fullStr A synthesis of evidence for policy from behavioural science during COVID-19
title_full_unstemmed A synthesis of evidence for policy from behavioural science during COVID-19
title_sort A synthesis of evidence for policy from behavioural science during COVID-19
dc.creator.none.fl_str_mv Ruggeri, Kai
Stock, Friederike
Haslam, S. Alexander
Capraro, Valerio
Boggio, Paulo
Ellemers, Naomi
Cichocka, Aleksandra
Douglas, Karen M.
Rand, David G.
van der Linden, Sander
Cikara, Mina
Finkel, Eli J.
Druckman, James N.
Wohl, Michael J. A.
Petty, Richard E.
Tucker, Joshua A.
Shariff, Azim
Gelfand, Michele
Packer, Dominic
Jetten, Jolanda
Van Lange, Paul A. M.
Pennycook, Gordon
Peters, Ellen
Navajas Ahumada, Joaquin Mariano
Papa, Francesca
Galizzi, Matteo M.
Milkman, Katherine L.
Petrović, Marija
Van Bavel, Jay J.
Willer, Robb
author Ruggeri, Kai
author_facet Ruggeri, Kai
Stock, Friederike
Haslam, S. Alexander
Capraro, Valerio
Boggio, Paulo
Ellemers, Naomi
Cichocka, Aleksandra
Douglas, Karen M.
Rand, David G.
van der Linden, Sander
Cikara, Mina
Finkel, Eli J.
Druckman, James N.
Wohl, Michael J. A.
Petty, Richard E.
Tucker, Joshua A.
Shariff, Azim
Gelfand, Michele
Packer, Dominic
Jetten, Jolanda
Van Lange, Paul A. M.
Pennycook, Gordon
Peters, Ellen
Navajas Ahumada, Joaquin Mariano
Papa, Francesca
Galizzi, Matteo M.
Milkman, Katherine L.
Petrović, Marija
Van Bavel, Jay J.
Willer, Robb
author_role author
author2 Stock, Friederike
Haslam, S. Alexander
Capraro, Valerio
Boggio, Paulo
Ellemers, Naomi
Cichocka, Aleksandra
Douglas, Karen M.
Rand, David G.
van der Linden, Sander
Cikara, Mina
Finkel, Eli J.
Druckman, James N.
Wohl, Michael J. A.
Petty, Richard E.
Tucker, Joshua A.
Shariff, Azim
Gelfand, Michele
Packer, Dominic
Jetten, Jolanda
Van Lange, Paul A. M.
Pennycook, Gordon
Peters, Ellen
Navajas Ahumada, Joaquin Mariano
Papa, Francesca
Galizzi, Matteo M.
Milkman, Katherine L.
Petrović, Marija
Van Bavel, Jay J.
Willer, Robb
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Policy recommendations
Public policy
Behavioural science
COVID-19
topic Policy recommendations
Public policy
Behavioural science
COVID-19
purl_subject.fl_str_mv https://purl.org/becyt/ford/5.1
https://purl.org/becyt/ford/5
https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization.
Fil: Ruggeri, Kai. New York Air National Guard; Estados Unidos. Columbia University Mailman School of Public Health; Estados Unidos. University of Cambridge; Estados Unidos
Fil: Stock, Friederike. Max Planck Institute for Human Development; Alemania. Humboldt-Universität zu Berlin; Alemania
Fil: Haslam, S. Alexander. University of Queensland; Australia
Fil: Capraro, Valerio. Università degli Studi di Milano; Italia
Fil: Boggio, Paulo. Universidade Presbiteriana Mackenzie; Brasil. National Institute of Science and Technology on Social and Affective Neuroscience; Brasil
Fil: Ellemers, Naomi. Utrecht University; Países Bajos. University of Utrecht; Países Bajos
Fil: Cichocka, Aleksandra. University Of Kent; Reino Unido
Fil: Douglas, Karen M.. University Of Kent; Reino Unido
Fil: Rand, David G.. Massachusetts Institute of Technology; Estados Unidos
Fil: van der Linden, Sander. University of Cambridge; Estados Unidos
Fil: Cikara, Mina. Harvard University; Estados Unidos
Fil: Finkel, Eli J.. Northwestern University; Estados Unidos
Fil: Druckman, James N.. Northwestern University; Estados Unidos
Fil: Wohl, Michael J. A.. Carleton University; Canadá
Fil: Petty, Richard E.. Ohio State University; Estados Unidos
Fil: Tucker, Joshua A.. University of New York; Estados Unidos
Fil: Shariff, Azim. University of British Columbia; Canadá
Fil: Gelfand, Michele. University of Stanford; Estados Unidos
Fil: Packer, Dominic. Lehigh University; Estados Unidos
Fil: Jetten, Jolanda. University of Queensland; Australia
Fil: Van Lange, Paul A. M.. Universitat zu Köln; Alemania. Vrije Universiteit Amsterdam; Países Bajos
Fil: Pennycook, Gordon. Cornell University; Estados Unidos
Fil: Peters, Ellen. University of Oregon; Estados Unidos
Fil: Navajas Ahumada, Joaquin Mariano. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Papa, Francesca. Organisation for Economic Co-operation and Development; Francia
Fil: Galizzi, Matteo M.. The London School of Economics and Political Science; Reino Unido
Fil: Milkman, Katherine L.. University of Pennsylvania; Estados Unidos
Fil: Petrović, Marija. University of Belgrade; Serbia
Fil: Van Bavel, Jay J.. University of New York; Estados Unidos
Fil: Willer, Robb. University of Stanford; Estados Unidos
description Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/240189
Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; et al.; A synthesis of evidence for policy from behavioural science during COVID-19; Nature Publishing Group; Nature; 625; 7993; 1-2024; 134-147
0028-0836
CONICET Digital
CONICET
url http://hdl.handle.net/11336/240189
identifier_str_mv Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; et al.; A synthesis of evidence for policy from behavioural science during COVID-19; Nature Publishing Group; Nature; 625; 7993; 1-2024; 134-147
0028-0836
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s41586-023-06840-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268975870771200
score 13.13397