Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos

Autores
Giannini Kurina, Franca; Suarez, Franco Marcelo; Paccioretti, Pablo Ariel; Macchiavelli, Raul; Balzarini, Monica Graciela
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El mapeo digital de suelos (MDS) permite describir la variabilidad espacial de una propiedad edáfica a treves de modelos de predicción espacial que explican la relación que existe entre la variable de interés y covariables sitio-especificas. Entre los modelos estadísticos más incipientes en aplicaciones de MDS está la regresión bayesiana ajustada con INLA (del inglés, Integrated Nested Laplace Approximation) y SPDE (del inglés, Stochastic Partial Differential Equation) para modelar la correlación espacial entre sitios del dominio espacial a mapear. En este trabajo, se evaluó la implementación de la regresión Bayesianas (RB) se ilustró con tres bases de datos espaciales de características contrastantes. Los resultados de la implementación con RB se compararon con otros dos algoritmos ampliamente utilizados en el MDS, Regresión Kriging (RK) y Random Forest con residuos krigeados (RF). Se evaluó el desempeño predictivo de RB comparado con RK y RF según un diseño que propone por un lado variar la configuración de variables explicativas y por otro el número de observación entrenando el modelo. Todos los predictores espaciales fueron eficientes para el mapeo. Las mejores configuraciones de variables explicativas lograron resultados exitosos en términos de errores de predicción global (<25%). Las diferencias en el desempeño predictivo entre algoritmos de predicción espacial dependieron de particularidades de los escenarios de aplicación. El aumento en la cantidad de covariables implicadas en el modelo, es decir el número de parámetros a estimar tiene un impacto diferencial para RF, algoritmo que produce mejor rendimiento comparado con RB y RK en contextos de alta dimensionalidad. Finalmente se concluye que el desempeño estadístico de RB es competitivo frente a RK y RF. Futuras líneas de investigación deberían profundizar el estudio de propagación y dimensionamiento de la incertidumbre debido a las particularidades que RB frente a los otros métodos evaluados.
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Suarez, Franco Marcelo. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Macchiavelli, Raul. Universidad de Puerto Rico; Puerto Rico
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
50ª Jornadas Argentinas de Informática
Buenos Aires
Argentina
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencia de datos
Modelos Jerarquicos Bayesianos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/249307

id CONICETDig_7e4f217352da265c6be8f0976c287ef0
oai_identifier_str oai:ri.conicet.gov.ar:11336/249307
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de SuelosGiannini Kurina, FrancaSuarez, Franco MarceloPaccioretti, Pablo ArielMacchiavelli, RaulBalzarini, Monica GracielaCiencia de datosModelos Jerarquicos Bayesianoshttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4El mapeo digital de suelos (MDS) permite describir la variabilidad espacial de una propiedad edáfica a treves de modelos de predicción espacial que explican la relación que existe entre la variable de interés y covariables sitio-especificas. Entre los modelos estadísticos más incipientes en aplicaciones de MDS está la regresión bayesiana ajustada con INLA (del inglés, Integrated Nested Laplace Approximation) y SPDE (del inglés, Stochastic Partial Differential Equation) para modelar la correlación espacial entre sitios del dominio espacial a mapear. En este trabajo, se evaluó la implementación de la regresión Bayesianas (RB) se ilustró con tres bases de datos espaciales de características contrastantes. Los resultados de la implementación con RB se compararon con otros dos algoritmos ampliamente utilizados en el MDS, Regresión Kriging (RK) y Random Forest con residuos krigeados (RF). Se evaluó el desempeño predictivo de RB comparado con RK y RF según un diseño que propone por un lado variar la configuración de variables explicativas y por otro el número de observación entrenando el modelo. Todos los predictores espaciales fueron eficientes para el mapeo. Las mejores configuraciones de variables explicativas lograron resultados exitosos en términos de errores de predicción global (<25%). Las diferencias en el desempeño predictivo entre algoritmos de predicción espacial dependieron de particularidades de los escenarios de aplicación. El aumento en la cantidad de covariables implicadas en el modelo, es decir el número de parámetros a estimar tiene un impacto diferencial para RF, algoritmo que produce mejor rendimiento comparado con RB y RK en contextos de alta dimensionalidad. Finalmente se concluye que el desempeño estadístico de RB es competitivo frente a RK y RF. Futuras líneas de investigación deberían profundizar el estudio de propagación y dimensionamiento de la incertidumbre debido a las particularidades que RB frente a los otros métodos evaluados.Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; ArgentinaFil: Suarez, Franco Marcelo. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; ArgentinaFil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; ArgentinaFil: Macchiavelli, Raul. Universidad de Puerto Rico; Puerto RicoFil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina50ª Jornadas Argentinas de InformáticaBuenos AiresArgentinaSociedad Argentina de Informática e Investigación OperativaSociedad Argentina de Informática e Investigación Operativa2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectJornadaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/249307Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos; 50ª Jornadas Argentinas de Informática; Buenos Aires; Argentina; 2021; 54-632525-0949CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://50jaiio.sadio.org.ar/pdfs/cai/CAI-10.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:45Zoai:ri.conicet.gov.ar:11336/249307instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:45.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos
title Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos
spellingShingle Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos
Giannini Kurina, Franca
Ciencia de datos
Modelos Jerarquicos Bayesianos
title_short Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos
title_full Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos
title_fullStr Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos
title_full_unstemmed Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos
title_sort Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos
dc.creator.none.fl_str_mv Giannini Kurina, Franca
Suarez, Franco Marcelo
Paccioretti, Pablo Ariel
Macchiavelli, Raul
Balzarini, Monica Graciela
author Giannini Kurina, Franca
author_facet Giannini Kurina, Franca
Suarez, Franco Marcelo
Paccioretti, Pablo Ariel
Macchiavelli, Raul
Balzarini, Monica Graciela
author_role author
author2 Suarez, Franco Marcelo
Paccioretti, Pablo Ariel
Macchiavelli, Raul
Balzarini, Monica Graciela
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencia de datos
Modelos Jerarquicos Bayesianos
topic Ciencia de datos
Modelos Jerarquicos Bayesianos
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv El mapeo digital de suelos (MDS) permite describir la variabilidad espacial de una propiedad edáfica a treves de modelos de predicción espacial que explican la relación que existe entre la variable de interés y covariables sitio-especificas. Entre los modelos estadísticos más incipientes en aplicaciones de MDS está la regresión bayesiana ajustada con INLA (del inglés, Integrated Nested Laplace Approximation) y SPDE (del inglés, Stochastic Partial Differential Equation) para modelar la correlación espacial entre sitios del dominio espacial a mapear. En este trabajo, se evaluó la implementación de la regresión Bayesianas (RB) se ilustró con tres bases de datos espaciales de características contrastantes. Los resultados de la implementación con RB se compararon con otros dos algoritmos ampliamente utilizados en el MDS, Regresión Kriging (RK) y Random Forest con residuos krigeados (RF). Se evaluó el desempeño predictivo de RB comparado con RK y RF según un diseño que propone por un lado variar la configuración de variables explicativas y por otro el número de observación entrenando el modelo. Todos los predictores espaciales fueron eficientes para el mapeo. Las mejores configuraciones de variables explicativas lograron resultados exitosos en términos de errores de predicción global (<25%). Las diferencias en el desempeño predictivo entre algoritmos de predicción espacial dependieron de particularidades de los escenarios de aplicación. El aumento en la cantidad de covariables implicadas en el modelo, es decir el número de parámetros a estimar tiene un impacto diferencial para RF, algoritmo que produce mejor rendimiento comparado con RB y RK en contextos de alta dimensionalidad. Finalmente se concluye que el desempeño estadístico de RB es competitivo frente a RK y RF. Futuras líneas de investigación deberían profundizar el estudio de propagación y dimensionamiento de la incertidumbre debido a las particularidades que RB frente a los otros métodos evaluados.
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Suarez, Franco Marcelo. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Macchiavelli, Raul. Universidad de Puerto Rico; Puerto Rico
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
50ª Jornadas Argentinas de Informática
Buenos Aires
Argentina
Sociedad Argentina de Informática e Investigación Operativa
description El mapeo digital de suelos (MDS) permite describir la variabilidad espacial de una propiedad edáfica a treves de modelos de predicción espacial que explican la relación que existe entre la variable de interés y covariables sitio-especificas. Entre los modelos estadísticos más incipientes en aplicaciones de MDS está la regresión bayesiana ajustada con INLA (del inglés, Integrated Nested Laplace Approximation) y SPDE (del inglés, Stochastic Partial Differential Equation) para modelar la correlación espacial entre sitios del dominio espacial a mapear. En este trabajo, se evaluó la implementación de la regresión Bayesianas (RB) se ilustró con tres bases de datos espaciales de características contrastantes. Los resultados de la implementación con RB se compararon con otros dos algoritmos ampliamente utilizados en el MDS, Regresión Kriging (RK) y Random Forest con residuos krigeados (RF). Se evaluó el desempeño predictivo de RB comparado con RK y RF según un diseño que propone por un lado variar la configuración de variables explicativas y por otro el número de observación entrenando el modelo. Todos los predictores espaciales fueron eficientes para el mapeo. Las mejores configuraciones de variables explicativas lograron resultados exitosos en términos de errores de predicción global (<25%). Las diferencias en el desempeño predictivo entre algoritmos de predicción espacial dependieron de particularidades de los escenarios de aplicación. El aumento en la cantidad de covariables implicadas en el modelo, es decir el número de parámetros a estimar tiene un impacto diferencial para RF, algoritmo que produce mejor rendimiento comparado con RB y RK en contextos de alta dimensionalidad. Finalmente se concluye que el desempeño estadístico de RB es competitivo frente a RK y RF. Futuras líneas de investigación deberían profundizar el estudio de propagación y dimensionamiento de la incertidumbre debido a las particularidades que RB frente a los otros métodos evaluados.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Jornada
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/249307
Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos; 50ª Jornadas Argentinas de Informática; Buenos Aires; Argentina; 2021; 54-63
2525-0949
CONICET Digital
CONICET
url http://hdl.handle.net/11336/249307
identifier_str_mv Desempeño predictivo de R-INLA SPDE para el Mapeo Digital de Suelos; 50ª Jornadas Argentinas de Informática; Buenos Aires; Argentina; 2021; 54-63
2525-0949
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://50jaiio.sadio.org.ar/pdfs/cai/CAI-10.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Sociedad Argentina de Informática e Investigación Operativa
publisher.none.fl_str_mv Sociedad Argentina de Informática e Investigación Operativa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269305037651968
score 13.13397