Is there an optimum scale for predicting bird species distribution in agricultural landscape?

Autores
Pelosi, Céline; Bonthoux, Sébastien; Castellarini, Fabiana; Goulard, Michel; Ladet, Sylvie Ladet; Balent, Gérard
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Changes in forest cover in agricultural landscapes affect biodiversity. Its management needs some indications about scale to predict occurrence of populations and communities. In this study we considered a forest cover index to predict bird species and community patterns in agricultural landscapes in southwestern France. We used generalized linear models for that purpose with prediction driven by wooded areas? spatial distribution at nine different radii. Using 1064 point counts, we modelled the distribution of 10 bird species whose habitat preferences are spread along a landscape opening gradient. We also modelled the distribution of species richness for farmland species and for forest species. We used satellite images to construct a ?wood/non-wood? map and calculated a forest index, considering the surface area of wooded areas at nine radii from 110 m to 910 m. The models? predictive quality was determined by the AUC (for predicted presences) and r (for predicted species richness) criteria. We found that the forest cover was a good predictor of the distribution of seven bird species in agricultural landscapes (mean AUC for the seven species ¼ 0.74 for the radius 110 m). Species richness of farmland and forest birds was satisfactorily predicted by the models (r ¼ 0.55 and 0.49, respectively, for the radius 110 m). The presence of the studied species and species richness metrics were better predicted at smaller scales (i.e. radii between 110 m and 310 m) within the range tested. These results have implications for bird population management in agricultural landscapes since better pinpointing the scale to predict species distributions will enhance targeting efforts to be made in terms of landscape management.
Fil: Pelosi, Céline. Institut National de la Recherche Agronomique; Francia
Fil: Bonthoux, Sébastien. Institut National de la Recherche Agronomique; Francia. Unité Mixte de Recherche. Cités, Territoires, Environnement, Sociétés; Francia
Fil: Castellarini, Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Institut National de la Recherche Agronomique; Francia
Fil: Goulard, Michel. Institut National de la Recherche Agronomique; Francia
Fil: Ladet, Sylvie Ladet. Institut National de la Recherche Agronomique; Francia
Fil: Balent, Gérard. Institut National de la Recherche Agronomique; Francia
Materia
Landscape
Birds
Scale
Agroecosystem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/10752

id CONICETDig_7dcba04d1b374b9e096d82229faefc7c
oai_identifier_str oai:ri.conicet.gov.ar:11336/10752
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Is there an optimum scale for predicting bird species distribution in agricultural landscape?Pelosi, CélineBonthoux, SébastienCastellarini, FabianaGoulard, MichelLadet, Sylvie LadetBalent, GérardLandscapeBirdsScaleAgroecosystemhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Changes in forest cover in agricultural landscapes affect biodiversity. Its management needs some indications about scale to predict occurrence of populations and communities. In this study we considered a forest cover index to predict bird species and community patterns in agricultural landscapes in southwestern France. We used generalized linear models for that purpose with prediction driven by wooded areas? spatial distribution at nine different radii. Using 1064 point counts, we modelled the distribution of 10 bird species whose habitat preferences are spread along a landscape opening gradient. We also modelled the distribution of species richness for farmland species and for forest species. We used satellite images to construct a ?wood/non-wood? map and calculated a forest index, considering the surface area of wooded areas at nine radii from 110 m to 910 m. The models? predictive quality was determined by the AUC (for predicted presences) and r (for predicted species richness) criteria. We found that the forest cover was a good predictor of the distribution of seven bird species in agricultural landscapes (mean AUC for the seven species ¼ 0.74 for the radius 110 m). Species richness of farmland and forest birds was satisfactorily predicted by the models (r ¼ 0.55 and 0.49, respectively, for the radius 110 m). The presence of the studied species and species richness metrics were better predicted at smaller scales (i.e. radii between 110 m and 310 m) within the range tested. These results have implications for bird population management in agricultural landscapes since better pinpointing the scale to predict species distributions will enhance targeting efforts to be made in terms of landscape management.Fil: Pelosi, Céline. Institut National de la Recherche Agronomique; FranciaFil: Bonthoux, Sébastien. Institut National de la Recherche Agronomique; Francia. Unité Mixte de Recherche. Cités, Territoires, Environnement, Sociétés; FranciaFil: Castellarini, Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Institut National de la Recherche Agronomique; FranciaFil: Goulard, Michel. Institut National de la Recherche Agronomique; FranciaFil: Ladet, Sylvie Ladet. Institut National de la Recherche Agronomique; FranciaFil: Balent, Gérard. Institut National de la Recherche Agronomique; FranciaElsevier2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10752Pelosi, Céline; Bonthoux, Sébastien; Castellarini, Fabiana; Goulard, Michel; Ladet, Sylvie Ladet; et al.; Is there an optimum scale for predicting bird species distribution in agricultural landscape?; Elsevier; Journal Of Environmental Management; 136; 4-2014; 54-610301-4797enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0301479714000371info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2014.01.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:13Zoai:ri.conicet.gov.ar:11336/10752instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:13.709CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Is there an optimum scale for predicting bird species distribution in agricultural landscape?
title Is there an optimum scale for predicting bird species distribution in agricultural landscape?
spellingShingle Is there an optimum scale for predicting bird species distribution in agricultural landscape?
Pelosi, Céline
Landscape
Birds
Scale
Agroecosystem
title_short Is there an optimum scale for predicting bird species distribution in agricultural landscape?
title_full Is there an optimum scale for predicting bird species distribution in agricultural landscape?
title_fullStr Is there an optimum scale for predicting bird species distribution in agricultural landscape?
title_full_unstemmed Is there an optimum scale for predicting bird species distribution in agricultural landscape?
title_sort Is there an optimum scale for predicting bird species distribution in agricultural landscape?
dc.creator.none.fl_str_mv Pelosi, Céline
Bonthoux, Sébastien
Castellarini, Fabiana
Goulard, Michel
Ladet, Sylvie Ladet
Balent, Gérard
author Pelosi, Céline
author_facet Pelosi, Céline
Bonthoux, Sébastien
Castellarini, Fabiana
Goulard, Michel
Ladet, Sylvie Ladet
Balent, Gérard
author_role author
author2 Bonthoux, Sébastien
Castellarini, Fabiana
Goulard, Michel
Ladet, Sylvie Ladet
Balent, Gérard
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Landscape
Birds
Scale
Agroecosystem
topic Landscape
Birds
Scale
Agroecosystem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Changes in forest cover in agricultural landscapes affect biodiversity. Its management needs some indications about scale to predict occurrence of populations and communities. In this study we considered a forest cover index to predict bird species and community patterns in agricultural landscapes in southwestern France. We used generalized linear models for that purpose with prediction driven by wooded areas? spatial distribution at nine different radii. Using 1064 point counts, we modelled the distribution of 10 bird species whose habitat preferences are spread along a landscape opening gradient. We also modelled the distribution of species richness for farmland species and for forest species. We used satellite images to construct a ?wood/non-wood? map and calculated a forest index, considering the surface area of wooded areas at nine radii from 110 m to 910 m. The models? predictive quality was determined by the AUC (for predicted presences) and r (for predicted species richness) criteria. We found that the forest cover was a good predictor of the distribution of seven bird species in agricultural landscapes (mean AUC for the seven species ¼ 0.74 for the radius 110 m). Species richness of farmland and forest birds was satisfactorily predicted by the models (r ¼ 0.55 and 0.49, respectively, for the radius 110 m). The presence of the studied species and species richness metrics were better predicted at smaller scales (i.e. radii between 110 m and 310 m) within the range tested. These results have implications for bird population management in agricultural landscapes since better pinpointing the scale to predict species distributions will enhance targeting efforts to be made in terms of landscape management.
Fil: Pelosi, Céline. Institut National de la Recherche Agronomique; Francia
Fil: Bonthoux, Sébastien. Institut National de la Recherche Agronomique; Francia. Unité Mixte de Recherche. Cités, Territoires, Environnement, Sociétés; Francia
Fil: Castellarini, Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Institut National de la Recherche Agronomique; Francia
Fil: Goulard, Michel. Institut National de la Recherche Agronomique; Francia
Fil: Ladet, Sylvie Ladet. Institut National de la Recherche Agronomique; Francia
Fil: Balent, Gérard. Institut National de la Recherche Agronomique; Francia
description Changes in forest cover in agricultural landscapes affect biodiversity. Its management needs some indications about scale to predict occurrence of populations and communities. In this study we considered a forest cover index to predict bird species and community patterns in agricultural landscapes in southwestern France. We used generalized linear models for that purpose with prediction driven by wooded areas? spatial distribution at nine different radii. Using 1064 point counts, we modelled the distribution of 10 bird species whose habitat preferences are spread along a landscape opening gradient. We also modelled the distribution of species richness for farmland species and for forest species. We used satellite images to construct a ?wood/non-wood? map and calculated a forest index, considering the surface area of wooded areas at nine radii from 110 m to 910 m. The models? predictive quality was determined by the AUC (for predicted presences) and r (for predicted species richness) criteria. We found that the forest cover was a good predictor of the distribution of seven bird species in agricultural landscapes (mean AUC for the seven species ¼ 0.74 for the radius 110 m). Species richness of farmland and forest birds was satisfactorily predicted by the models (r ¼ 0.55 and 0.49, respectively, for the radius 110 m). The presence of the studied species and species richness metrics were better predicted at smaller scales (i.e. radii between 110 m and 310 m) within the range tested. These results have implications for bird population management in agricultural landscapes since better pinpointing the scale to predict species distributions will enhance targeting efforts to be made in terms of landscape management.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/10752
Pelosi, Céline; Bonthoux, Sébastien; Castellarini, Fabiana; Goulard, Michel; Ladet, Sylvie Ladet; et al.; Is there an optimum scale for predicting bird species distribution in agricultural landscape?; Elsevier; Journal Of Environmental Management; 136; 4-2014; 54-61
0301-4797
url http://hdl.handle.net/11336/10752
identifier_str_mv Pelosi, Céline; Bonthoux, Sébastien; Castellarini, Fabiana; Goulard, Michel; Ladet, Sylvie Ladet; et al.; Is there an optimum scale for predicting bird species distribution in agricultural landscape?; Elsevier; Journal Of Environmental Management; 136; 4-2014; 54-61
0301-4797
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0301479714000371
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jenvman.2014.01.022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614067164020736
score 13.070432