Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families
- Autores
- Perichinsky, Gregorio; Jiménez Rey, Elizabeth Miriam; Grossi, María Delia; Vallejos, Félix Anibal; Servetto, Arturo Carlos; Orellana, Rosa Beatriz; Plastino, Ángel Luis
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa), using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i) the Euclidean distance and ii) nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method) obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based the same one on the state of their characters. A new taxonomic criterion is thereby formulated and a new approach to Computational Taxonomy is presented, that has been already employed with reference to Data Mining, when apply of Machine Learning techniques, in particular to the C4.5 algorithms, created by Quinlan, the degree of efficiency achieved by the TDIDT family´s algorithms when are generating valid models of the data in classification problems with the Gain of Entropy through Maximum Entropy Principle.
Fil: Perichinsky, Gregorio. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Jiménez Rey, Elizabeth Miriam. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Grossi, María Delia. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Vallejos, Félix Anibal. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Servetto, Arturo Carlos. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Orellana, Rosa Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina - Materia
-
Asteroids
Numeric taxonomy
Intelligent information algorithms
Entrophy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/39609
Ver los metadatos del registro completo
id |
CONICETDig_7d7da989ca2af7884b338d5f6b341749 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/39609 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids familiesPerichinsky, GregorioJiménez Rey, Elizabeth MiriamGrossi, María DeliaVallejos, Félix AnibalServetto, Arturo CarlosOrellana, Rosa BeatrizPlastino, Ángel LuisAsteroidsNumeric taxonomyIntelligent information algorithmsEntrophyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa), using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i) the Euclidean distance and ii) nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method) obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based the same one on the state of their characters. A new taxonomic criterion is thereby formulated and a new approach to Computational Taxonomy is presented, that has been already employed with reference to Data Mining, when apply of Machine Learning techniques, in particular to the C4.5 algorithms, created by Quinlan, the degree of efficiency achieved by the TDIDT family´s algorithms when are generating valid models of the data in classification problems with the Gain of Entropy through Maximum Entropy Principle.Fil: Perichinsky, Gregorio. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Jiménez Rey, Elizabeth Miriam. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Grossi, María Delia. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Vallejos, Félix Anibal. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Servetto, Arturo Carlos. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Orellana, Rosa Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFacultade Cenecista de Campo Largo2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39609Perichinsky, Gregorio; Jiménez Rey, Elizabeth Miriam; Grossi, María Delia; Vallejos, Félix Anibal; Servetto, Arturo Carlos; et al.; Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families; Facultade Cenecista de Campo Largo; Revista Electrônica de Sistemas de Informacao; 4; 2; 12-2005; 1-141677-3071CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.21529/RESI.2005.0402006info:eu-repo/semantics/altIdentifier/url/http://www.periodicosibepes.org.br/index.php/reinfo/article/view/160info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:42Zoai:ri.conicet.gov.ar:11336/39609instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:42.779CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families |
title |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families |
spellingShingle |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families Perichinsky, Gregorio Asteroids Numeric taxonomy Intelligent information algorithms Entrophy |
title_short |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families |
title_full |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families |
title_fullStr |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families |
title_full_unstemmed |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families |
title_sort |
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families |
dc.creator.none.fl_str_mv |
Perichinsky, Gregorio Jiménez Rey, Elizabeth Miriam Grossi, María Delia Vallejos, Félix Anibal Servetto, Arturo Carlos Orellana, Rosa Beatriz Plastino, Ángel Luis |
author |
Perichinsky, Gregorio |
author_facet |
Perichinsky, Gregorio Jiménez Rey, Elizabeth Miriam Grossi, María Delia Vallejos, Félix Anibal Servetto, Arturo Carlos Orellana, Rosa Beatriz Plastino, Ángel Luis |
author_role |
author |
author2 |
Jiménez Rey, Elizabeth Miriam Grossi, María Delia Vallejos, Félix Anibal Servetto, Arturo Carlos Orellana, Rosa Beatriz Plastino, Ángel Luis |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Asteroids Numeric taxonomy Intelligent information algorithms Entrophy |
topic |
Asteroids Numeric taxonomy Intelligent information algorithms Entrophy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa), using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i) the Euclidean distance and ii) nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method) obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based the same one on the state of their characters. A new taxonomic criterion is thereby formulated and a new approach to Computational Taxonomy is presented, that has been already employed with reference to Data Mining, when apply of Machine Learning techniques, in particular to the C4.5 algorithms, created by Quinlan, the degree of efficiency achieved by the TDIDT family´s algorithms when are generating valid models of the data in classification problems with the Gain of Entropy through Maximum Entropy Principle. Fil: Perichinsky, Gregorio. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Jiménez Rey, Elizabeth Miriam. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Grossi, María Delia. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Vallejos, Félix Anibal. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Servetto, Arturo Carlos. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Orellana, Rosa Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina |
description |
The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa), using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i) the Euclidean distance and ii) nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method) obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based the same one on the state of their characters. A new taxonomic criterion is thereby formulated and a new approach to Computational Taxonomy is presented, that has been already employed with reference to Data Mining, when apply of Machine Learning techniques, in particular to the C4.5 algorithms, created by Quinlan, the degree of efficiency achieved by the TDIDT family´s algorithms when are generating valid models of the data in classification problems with the Gain of Entropy through Maximum Entropy Principle. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/39609 Perichinsky, Gregorio; Jiménez Rey, Elizabeth Miriam; Grossi, María Delia; Vallejos, Félix Anibal; Servetto, Arturo Carlos; et al.; Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families; Facultade Cenecista de Campo Largo; Revista Electrônica de Sistemas de Informacao; 4; 2; 12-2005; 1-14 1677-3071 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/39609 |
identifier_str_mv |
Perichinsky, Gregorio; Jiménez Rey, Elizabeth Miriam; Grossi, María Delia; Vallejos, Félix Anibal; Servetto, Arturo Carlos; et al.; Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families; Facultade Cenecista de Campo Largo; Revista Electrônica de Sistemas de Informacao; 4; 2; 12-2005; 1-14 1677-3071 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.21529/RESI.2005.0402006 info:eu-repo/semantics/altIdentifier/url/http://www.periodicosibepes.org.br/index.php/reinfo/article/view/160 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Facultade Cenecista de Campo Largo |
publisher.none.fl_str_mv |
Facultade Cenecista de Campo Largo |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613075937787904 |
score |
13.070432 |