Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction

Autores
Moreno Gomez, Mario Fredy; Gonzalez Oliver, Carlos Julian R.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pure Al, Alumix 13 (Al–4.5 wt.% Cu 0.5 Mg 0.2 Si) powders and Alumix13 reinforced with 15 wt.% Saffil short fibers were compacted up to 250–386 MPa in an axial die to study their compacting behavior. The final relative densities D were higher than 0.95 for all unreinforced powders and 0.86 for the composite. Different micromechanical and phenomenological models were used to fit density–pressure relations. Arzt model describes the powder compaction with good agreement up to D ~ 0.85. Kawakita equation results as a best linear fit for all tests, but its compressibility parameter b is not in agreement with the hardening behavior of the composite. Panelli and Ambrosio equation could describe the data fairly well qualitatively for all compactions tests, however, over a limited pressure range. Finally, Konopicky relationship turned out to be very useful and fitted the densification data of all three materials quite well. Its slope from linear P vs. ln (1/(1−D)) plots, is related to the yield stress and characterizes thework hardening developed during plastic deformation while the density was increased. Microhardness values increase with the compacting pressure and such tendency agrees with the rising values of yield stresses, obtained by Konopicky.
Fil: Moreno Gomez, Mario Fredy. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Gonzalez Oliver, Carlos Julian R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina
Materia
ALUMINUM POWDER
METAL MATRIX COMPOSITES
CERAMIC SHORT FIBERS
PLASTIC COLD COMPACTION
DENSIFICATION BEHAVIOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275497

id CONICETDig_7d58a57184146df6e1033755a39e393e
oai_identifier_str oai:ri.conicet.gov.ar:11336/275497
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compactionMoreno Gomez, Mario FredyGonzalez Oliver, Carlos Julian R.ALUMINUM POWDERMETAL MATRIX COMPOSITESCERAMIC SHORT FIBERSPLASTIC COLD COMPACTIONDENSIFICATION BEHAVIORhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Pure Al, Alumix 13 (Al–4.5 wt.% Cu 0.5 Mg 0.2 Si) powders and Alumix13 reinforced with 15 wt.% Saffil short fibers were compacted up to 250–386 MPa in an axial die to study their compacting behavior. The final relative densities D were higher than 0.95 for all unreinforced powders and 0.86 for the composite. Different micromechanical and phenomenological models were used to fit density–pressure relations. Arzt model describes the powder compaction with good agreement up to D ~ 0.85. Kawakita equation results as a best linear fit for all tests, but its compressibility parameter b is not in agreement with the hardening behavior of the composite. Panelli and Ambrosio equation could describe the data fairly well qualitatively for all compactions tests, however, over a limited pressure range. Finally, Konopicky relationship turned out to be very useful and fitted the densification data of all three materials quite well. Its slope from linear P vs. ln (1/(1−D)) plots, is related to the yield stress and characterizes thework hardening developed during plastic deformation while the density was increased. Microhardness values increase with the compacting pressure and such tendency agrees with the rising values of yield stresses, obtained by Konopicky.Fil: Moreno Gomez, Mario Fredy. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Gonzalez Oliver, Carlos Julian R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; ArgentinaElsevier Science SA2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275497Moreno Gomez, Mario Fredy; Gonzalez Oliver, Carlos Julian R.; Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction; Elsevier Science SA; Powder Technology; 206; 3; 3-2011; 297-3050032-5910CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0032591010005206info:eu-repo/semantics/altIdentifier/doi/10.1016/j.powtec.2010.09.034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:46:11Zoai:ri.conicet.gov.ar:11336/275497instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:46:12.002CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction
title Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction
spellingShingle Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction
Moreno Gomez, Mario Fredy
ALUMINUM POWDER
METAL MATRIX COMPOSITES
CERAMIC SHORT FIBERS
PLASTIC COLD COMPACTION
DENSIFICATION BEHAVIOR
title_short Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction
title_full Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction
title_fullStr Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction
title_full_unstemmed Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction
title_sort Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction
dc.creator.none.fl_str_mv Moreno Gomez, Mario Fredy
Gonzalez Oliver, Carlos Julian R.
author Moreno Gomez, Mario Fredy
author_facet Moreno Gomez, Mario Fredy
Gonzalez Oliver, Carlos Julian R.
author_role author
author2 Gonzalez Oliver, Carlos Julian R.
author2_role author
dc.subject.none.fl_str_mv ALUMINUM POWDER
METAL MATRIX COMPOSITES
CERAMIC SHORT FIBERS
PLASTIC COLD COMPACTION
DENSIFICATION BEHAVIOR
topic ALUMINUM POWDER
METAL MATRIX COMPOSITES
CERAMIC SHORT FIBERS
PLASTIC COLD COMPACTION
DENSIFICATION BEHAVIOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Pure Al, Alumix 13 (Al–4.5 wt.% Cu 0.5 Mg 0.2 Si) powders and Alumix13 reinforced with 15 wt.% Saffil short fibers were compacted up to 250–386 MPa in an axial die to study their compacting behavior. The final relative densities D were higher than 0.95 for all unreinforced powders and 0.86 for the composite. Different micromechanical and phenomenological models were used to fit density–pressure relations. Arzt model describes the powder compaction with good agreement up to D ~ 0.85. Kawakita equation results as a best linear fit for all tests, but its compressibility parameter b is not in agreement with the hardening behavior of the composite. Panelli and Ambrosio equation could describe the data fairly well qualitatively for all compactions tests, however, over a limited pressure range. Finally, Konopicky relationship turned out to be very useful and fitted the densification data of all three materials quite well. Its slope from linear P vs. ln (1/(1−D)) plots, is related to the yield stress and characterizes thework hardening developed during plastic deformation while the density was increased. Microhardness values increase with the compacting pressure and such tendency agrees with the rising values of yield stresses, obtained by Konopicky.
Fil: Moreno Gomez, Mario Fredy. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Gonzalez Oliver, Carlos Julian R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada; Argentina
description Pure Al, Alumix 13 (Al–4.5 wt.% Cu 0.5 Mg 0.2 Si) powders and Alumix13 reinforced with 15 wt.% Saffil short fibers were compacted up to 250–386 MPa in an axial die to study their compacting behavior. The final relative densities D were higher than 0.95 for all unreinforced powders and 0.86 for the composite. Different micromechanical and phenomenological models were used to fit density–pressure relations. Arzt model describes the powder compaction with good agreement up to D ~ 0.85. Kawakita equation results as a best linear fit for all tests, but its compressibility parameter b is not in agreement with the hardening behavior of the composite. Panelli and Ambrosio equation could describe the data fairly well qualitatively for all compactions tests, however, over a limited pressure range. Finally, Konopicky relationship turned out to be very useful and fitted the densification data of all three materials quite well. Its slope from linear P vs. ln (1/(1−D)) plots, is related to the yield stress and characterizes thework hardening developed during plastic deformation while the density was increased. Microhardness values increase with the compacting pressure and such tendency agrees with the rising values of yield stresses, obtained by Konopicky.
publishDate 2011
dc.date.none.fl_str_mv 2011-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275497
Moreno Gomez, Mario Fredy; Gonzalez Oliver, Carlos Julian R.; Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction; Elsevier Science SA; Powder Technology; 206; 3; 3-2011; 297-305
0032-5910
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275497
identifier_str_mv Moreno Gomez, Mario Fredy; Gonzalez Oliver, Carlos Julian R.; Densification of Al powder and Al–Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction; Elsevier Science SA; Powder Technology; 206; 3; 3-2011; 297-305
0032-5910
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0032591010005206
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.powtec.2010.09.034
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335813353799680
score 12.952241