Gravity wave activity in the mesopause region from airglow measurements at El Leoncito

Autores
Reisin, Esteban Rodolfo; Scheer, Jurgen
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Based on almost 1000 nights of OH(6-2) and O2b(0-1) airglow data measured during 1998–2002 at El Leoncito (31:8◦S, 69:2◦W), seasonal variations of gravity wave activity are determined from temperature and intensity variances. The photon-counting technique used permits to derive the individual statistical errors a priori, and to quantitatively isolate the geophysical variance. The two airglow emissions yield results for the altitudes of 87 and 95 km. Tidal activity contains most of the variance (especially between March and October) and therefore must be suppressed to obtain gravity wave activity. There are strong night-to-night variations, from completely quiet to variances of more than 80 K2 in temperature. The interannual variability was small enough to de;ne a meaningful seasonal climatology. The wave activity variation is semiannual, similar to previous radar wind results, including those at the same latitude, and has its main maximum in southern winter and a weaker maximum in summer. The growth of wave activity from 87 to 95 km, when interpreted in terms of an amplitude growth factor, leads to a value of 1:35 ± 0:01, similar to the one obtained for tides, in a previous paper of ours. From the comparison of intensity and temperature variance for a given emission, mean values of Krassovsky’s are derived (5:60 ± 0:09 for OH, and 5:08 ± 0:08 for O2), that compare favourably with results obtained from individual wave signatures. This proves the consistency between the wave activities derived from intensities and temperatures.
Fil: Reisin, Esteban Rodolfo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Scheer, Jurgen. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
Gravity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22201

id CONICETDig_7ccf9ec49399abad1c10ca03d3f3a3ad
oai_identifier_str oai:ri.conicet.gov.ar:11336/22201
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gravity wave activity in the mesopause region from airglow measurements at El LeoncitoReisin, Esteban RodolfoScheer, JurgenGravityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Based on almost 1000 nights of OH(6-2) and O2b(0-1) airglow data measured during 1998–2002 at El Leoncito (31:8◦S, 69:2◦W), seasonal variations of gravity wave activity are determined from temperature and intensity variances. The photon-counting technique used permits to derive the individual statistical errors a priori, and to quantitatively isolate the geophysical variance. The two airglow emissions yield results for the altitudes of 87 and 95 km. Tidal activity contains most of the variance (especially between March and October) and therefore must be suppressed to obtain gravity wave activity. There are strong night-to-night variations, from completely quiet to variances of more than 80 K2 in temperature. The interannual variability was small enough to de;ne a meaningful seasonal climatology. The wave activity variation is semiannual, similar to previous radar wind results, including those at the same latitude, and has its main maximum in southern winter and a weaker maximum in summer. The growth of wave activity from 87 to 95 km, when interpreted in terms of an amplitude growth factor, leads to a value of 1:35 ± 0:01, similar to the one obtained for tides, in a previous paper of ours. From the comparison of intensity and temperature variance for a given emission, mean values of Krassovsky’s are derived (5:60 ± 0:09 for OH, and 5:08 ± 0:08 for O2), that compare favourably with results obtained from individual wave signatures. This proves the consistency between the wave activities derived from intensities and temperatures.Fil: Reisin, Esteban Rodolfo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Scheer, Jurgen. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaElsevier2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22201Reisin, Esteban Rodolfo; Scheer, Jurgen; Gravity wave activity in the mesopause region from airglow measurements at El Leoncito; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 66; 6-9; 12-2004; 655-6611364-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S136468260400029Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jastp.2004.01.017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:06:12Zoai:ri.conicet.gov.ar:11336/22201instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:06:12.654CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gravity wave activity in the mesopause region from airglow measurements at El Leoncito
title Gravity wave activity in the mesopause region from airglow measurements at El Leoncito
spellingShingle Gravity wave activity in the mesopause region from airglow measurements at El Leoncito
Reisin, Esteban Rodolfo
Gravity
title_short Gravity wave activity in the mesopause region from airglow measurements at El Leoncito
title_full Gravity wave activity in the mesopause region from airglow measurements at El Leoncito
title_fullStr Gravity wave activity in the mesopause region from airglow measurements at El Leoncito
title_full_unstemmed Gravity wave activity in the mesopause region from airglow measurements at El Leoncito
title_sort Gravity wave activity in the mesopause region from airglow measurements at El Leoncito
dc.creator.none.fl_str_mv Reisin, Esteban Rodolfo
Scheer, Jurgen
author Reisin, Esteban Rodolfo
author_facet Reisin, Esteban Rodolfo
Scheer, Jurgen
author_role author
author2 Scheer, Jurgen
author2_role author
dc.subject.none.fl_str_mv Gravity
topic Gravity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Based on almost 1000 nights of OH(6-2) and O2b(0-1) airglow data measured during 1998–2002 at El Leoncito (31:8◦S, 69:2◦W), seasonal variations of gravity wave activity are determined from temperature and intensity variances. The photon-counting technique used permits to derive the individual statistical errors a priori, and to quantitatively isolate the geophysical variance. The two airglow emissions yield results for the altitudes of 87 and 95 km. Tidal activity contains most of the variance (especially between March and October) and therefore must be suppressed to obtain gravity wave activity. There are strong night-to-night variations, from completely quiet to variances of more than 80 K2 in temperature. The interannual variability was small enough to de;ne a meaningful seasonal climatology. The wave activity variation is semiannual, similar to previous radar wind results, including those at the same latitude, and has its main maximum in southern winter and a weaker maximum in summer. The growth of wave activity from 87 to 95 km, when interpreted in terms of an amplitude growth factor, leads to a value of 1:35 ± 0:01, similar to the one obtained for tides, in a previous paper of ours. From the comparison of intensity and temperature variance for a given emission, mean values of Krassovsky’s are derived (5:60 ± 0:09 for OH, and 5:08 ± 0:08 for O2), that compare favourably with results obtained from individual wave signatures. This proves the consistency between the wave activities derived from intensities and temperatures.
Fil: Reisin, Esteban Rodolfo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Scheer, Jurgen. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description Based on almost 1000 nights of OH(6-2) and O2b(0-1) airglow data measured during 1998–2002 at El Leoncito (31:8◦S, 69:2◦W), seasonal variations of gravity wave activity are determined from temperature and intensity variances. The photon-counting technique used permits to derive the individual statistical errors a priori, and to quantitatively isolate the geophysical variance. The two airglow emissions yield results for the altitudes of 87 and 95 km. Tidal activity contains most of the variance (especially between March and October) and therefore must be suppressed to obtain gravity wave activity. There are strong night-to-night variations, from completely quiet to variances of more than 80 K2 in temperature. The interannual variability was small enough to de;ne a meaningful seasonal climatology. The wave activity variation is semiannual, similar to previous radar wind results, including those at the same latitude, and has its main maximum in southern winter and a weaker maximum in summer. The growth of wave activity from 87 to 95 km, when interpreted in terms of an amplitude growth factor, leads to a value of 1:35 ± 0:01, similar to the one obtained for tides, in a previous paper of ours. From the comparison of intensity and temperature variance for a given emission, mean values of Krassovsky’s are derived (5:60 ± 0:09 for OH, and 5:08 ± 0:08 for O2), that compare favourably with results obtained from individual wave signatures. This proves the consistency between the wave activities derived from intensities and temperatures.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22201
Reisin, Esteban Rodolfo; Scheer, Jurgen; Gravity wave activity in the mesopause region from airglow measurements at El Leoncito; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 66; 6-9; 12-2004; 655-661
1364-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22201
identifier_str_mv Reisin, Esteban Rodolfo; Scheer, Jurgen; Gravity wave activity in the mesopause region from airglow measurements at El Leoncito; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 66; 6-9; 12-2004; 655-661
1364-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S136468260400029X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jastp.2004.01.017
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782417507975168
score 12.982451