Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)

Autores
Busi, Roberto; Gaines, Todd A.; Vila Aiub, Martin Miguel; Powles, Stephen B.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Agricultural weeds have rapidly adapted to intensive herbicide selection and resistance to herbicides has evolved within ecological timescales. Yet, the genetic basis of broad-spectrum generalist herbicide resistance is largely unknown. This study aims to determine the genetic control of non-target-site herbicide resistance trait(s) that rapidly evolved under recurrent selection of the novel lipid biosynthesis inhibitor pyroxasulfone in Lolium rigidum. The phenotypic segregation of pyroxasulfone resistance in parental, F1 and back-cross (BC) families was assessed in plants exposed to a gradient of pyroxasulfone doses. The inheritance of resistance to chemically dissimilar herbicides (cross-resistance) was also evaluated. Evolved resistance to the novel selective agent (pyroxasulfone) is explained by Mendelian segregation of one semi-dominant allele incrementally herbicide-selected at higher frequency in the progeny. In BC families, cross-resistance is conferred by an incompletely dominant single major locus. This study confirms that herbicide resistance can rapidly evolve to any novel selective herbicide agents by continuous and repeated herbicide use. The results imply that the combination of herbicide options (rotation, mixtures or combinations) to exploit incomplete dominance can provide acceptable control of broad-spectrum generalist resistance-endowing monogenic traits. Herbicide diversity within a set of integrated management tactics can be one important component to reduce the herbicide selection intensity.
Fil: Busi, Roberto. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; Australia
Fil: Gaines, Todd A.. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; Australia
Fil: Vila Aiub, Martin Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Powles, Stephen B.. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; Australia
Materia
Adaptation
Agriculture
Experimenal Evolution
Herbicide Resistance
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4178

id CONICETDig_7b9466caa1eb52c8b6461a836abb84f3
oai_identifier_str oai:ri.conicet.gov.ar:11336/4178
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)Busi, RobertoGaines, Todd A.Vila Aiub, Martin MiguelPowles, Stephen B.AdaptationAgricultureExperimenal EvolutionHerbicide Resistancehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Agricultural weeds have rapidly adapted to intensive herbicide selection and resistance to herbicides has evolved within ecological timescales. Yet, the genetic basis of broad-spectrum generalist herbicide resistance is largely unknown. This study aims to determine the genetic control of non-target-site herbicide resistance trait(s) that rapidly evolved under recurrent selection of the novel lipid biosynthesis inhibitor pyroxasulfone in Lolium rigidum. The phenotypic segregation of pyroxasulfone resistance in parental, F1 and back-cross (BC) families was assessed in plants exposed to a gradient of pyroxasulfone doses. The inheritance of resistance to chemically dissimilar herbicides (cross-resistance) was also evaluated. Evolved resistance to the novel selective agent (pyroxasulfone) is explained by Mendelian segregation of one semi-dominant allele incrementally herbicide-selected at higher frequency in the progeny. In BC families, cross-resistance is conferred by an incompletely dominant single major locus. This study confirms that herbicide resistance can rapidly evolve to any novel selective herbicide agents by continuous and repeated herbicide use. The results imply that the combination of herbicide options (rotation, mixtures or combinations) to exploit incomplete dominance can provide acceptable control of broad-spectrum generalist resistance-endowing monogenic traits. Herbicide diversity within a set of integrated management tactics can be one important component to reduce the herbicide selection intensity.Fil: Busi, Roberto. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; AustraliaFil: Gaines, Todd A.. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; AustraliaFil: Vila Aiub, Martin Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Powles, Stephen B.. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; AustraliaElsevier Ireland2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4178Busi, Roberto; Gaines, Todd A.; Vila Aiub, Martin Miguel; Powles, Stephen B.; Inheritance of evolved resistance to a novel herbicide (pyroxasulfone); Elsevier Ireland; Plant Science; 217-218; 1-2014; 127-1340168-9452enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168945213002665info:eu-repo/semantics/altIdentifier/doi/10.1016/j.plantsci.2013.12.005info:eu-repo/semantics/altIdentifier/issn/0168-9452info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:03Zoai:ri.conicet.gov.ar:11336/4178instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:03.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
title Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
spellingShingle Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
Busi, Roberto
Adaptation
Agriculture
Experimenal Evolution
Herbicide Resistance
title_short Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
title_full Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
title_fullStr Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
title_full_unstemmed Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
title_sort Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
dc.creator.none.fl_str_mv Busi, Roberto
Gaines, Todd A.
Vila Aiub, Martin Miguel
Powles, Stephen B.
author Busi, Roberto
author_facet Busi, Roberto
Gaines, Todd A.
Vila Aiub, Martin Miguel
Powles, Stephen B.
author_role author
author2 Gaines, Todd A.
Vila Aiub, Martin Miguel
Powles, Stephen B.
author2_role author
author
author
dc.subject.none.fl_str_mv Adaptation
Agriculture
Experimenal Evolution
Herbicide Resistance
topic Adaptation
Agriculture
Experimenal Evolution
Herbicide Resistance
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Agricultural weeds have rapidly adapted to intensive herbicide selection and resistance to herbicides has evolved within ecological timescales. Yet, the genetic basis of broad-spectrum generalist herbicide resistance is largely unknown. This study aims to determine the genetic control of non-target-site herbicide resistance trait(s) that rapidly evolved under recurrent selection of the novel lipid biosynthesis inhibitor pyroxasulfone in Lolium rigidum. The phenotypic segregation of pyroxasulfone resistance in parental, F1 and back-cross (BC) families was assessed in plants exposed to a gradient of pyroxasulfone doses. The inheritance of resistance to chemically dissimilar herbicides (cross-resistance) was also evaluated. Evolved resistance to the novel selective agent (pyroxasulfone) is explained by Mendelian segregation of one semi-dominant allele incrementally herbicide-selected at higher frequency in the progeny. In BC families, cross-resistance is conferred by an incompletely dominant single major locus. This study confirms that herbicide resistance can rapidly evolve to any novel selective herbicide agents by continuous and repeated herbicide use. The results imply that the combination of herbicide options (rotation, mixtures or combinations) to exploit incomplete dominance can provide acceptable control of broad-spectrum generalist resistance-endowing monogenic traits. Herbicide diversity within a set of integrated management tactics can be one important component to reduce the herbicide selection intensity.
Fil: Busi, Roberto. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; Australia
Fil: Gaines, Todd A.. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; Australia
Fil: Vila Aiub, Martin Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Powles, Stephen B.. University Of Western Australia. School of Plant Biology. Australian Herbicide Resistance Initiative; Australia
description Agricultural weeds have rapidly adapted to intensive herbicide selection and resistance to herbicides has evolved within ecological timescales. Yet, the genetic basis of broad-spectrum generalist herbicide resistance is largely unknown. This study aims to determine the genetic control of non-target-site herbicide resistance trait(s) that rapidly evolved under recurrent selection of the novel lipid biosynthesis inhibitor pyroxasulfone in Lolium rigidum. The phenotypic segregation of pyroxasulfone resistance in parental, F1 and back-cross (BC) families was assessed in plants exposed to a gradient of pyroxasulfone doses. The inheritance of resistance to chemically dissimilar herbicides (cross-resistance) was also evaluated. Evolved resistance to the novel selective agent (pyroxasulfone) is explained by Mendelian segregation of one semi-dominant allele incrementally herbicide-selected at higher frequency in the progeny. In BC families, cross-resistance is conferred by an incompletely dominant single major locus. This study confirms that herbicide resistance can rapidly evolve to any novel selective herbicide agents by continuous and repeated herbicide use. The results imply that the combination of herbicide options (rotation, mixtures or combinations) to exploit incomplete dominance can provide acceptable control of broad-spectrum generalist resistance-endowing monogenic traits. Herbicide diversity within a set of integrated management tactics can be one important component to reduce the herbicide selection intensity.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4178
Busi, Roberto; Gaines, Todd A.; Vila Aiub, Martin Miguel; Powles, Stephen B.; Inheritance of evolved resistance to a novel herbicide (pyroxasulfone); Elsevier Ireland; Plant Science; 217-218; 1-2014; 127-134
0168-9452
url http://hdl.handle.net/11336/4178
identifier_str_mv Busi, Roberto; Gaines, Todd A.; Vila Aiub, Martin Miguel; Powles, Stephen B.; Inheritance of evolved resistance to a novel herbicide (pyroxasulfone); Elsevier Ireland; Plant Science; 217-218; 1-2014; 127-134
0168-9452
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168945213002665
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.plantsci.2013.12.005
info:eu-repo/semantics/altIdentifier/issn/0168-9452
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Ireland
publisher.none.fl_str_mv Elsevier Ireland
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614101364375552
score 13.070432