Counterterms in semiclassical Hořava-Lifshitz gravity

Autores
Giribet, Gaston Enrique; Lopez Nacir, Diana Laura; Mazzitelli, Francisco Diego
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the semiclassical Hořava-Lifshitz gravity for quantum scalar fields in 3 + 1 dimensions. The renormalizability of the theory requires that the action of the scalar field contains terms with six spatial derivatives of the field, i.e. in the UV, the classical action of the scalar field should preserve the anisotropic scaling symmetry (t → L 2zt, x→ → L 2x→, with z = 3) of the gravitational action. We discuss the renormalization procedure based on adiabatic subtraction and dimensional regularization in the weak field approximation. We verify that the divergent terms in the adiabatic expansion of the expectation value of the energy-momentum tensor of the scalar field contain up to six spatial derivatives, but do not contain more than two time derivatives. We compute explicitly the counterterms needed for the renormalization of the theory up to second adiabatic order and evaluate the associated β functions in the minimal subtraction scheme. © SISSA 2010.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lopez Nacir, Diana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Models of Quantum Gravity
Renormalization Regularization And Renormalons
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57247

id CONICETDig_7b93efa5ec2dc05ec1eb0486abf6f712
oai_identifier_str oai:ri.conicet.gov.ar:11336/57247
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Counterterms in semiclassical Hořava-Lifshitz gravityGiribet, Gaston EnriqueLopez Nacir, Diana LauraMazzitelli, Francisco DiegoModels of Quantum GravityRenormalization Regularization And Renormalonshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the semiclassical Hořava-Lifshitz gravity for quantum scalar fields in 3 + 1 dimensions. The renormalizability of the theory requires that the action of the scalar field contains terms with six spatial derivatives of the field, i.e. in the UV, the classical action of the scalar field should preserve the anisotropic scaling symmetry (t → L 2zt, x→ → L 2x→, with z = 3) of the gravitational action. We discuss the renormalization procedure based on adiabatic subtraction and dimensional regularization in the weak field approximation. We verify that the divergent terms in the adiabatic expansion of the expectation value of the energy-momentum tensor of the scalar field contain up to six spatial derivatives, but do not contain more than two time derivatives. We compute explicitly the counterterms needed for the renormalization of the theory up to second adiabatic order and evaluate the associated β functions in the minimal subtraction scheme. © SISSA 2010.Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lopez Nacir, Diana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mazzitelli, Francisco Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaSpringer2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57247Giribet, Gaston Enrique; Lopez Nacir, Diana Laura; Mazzitelli, Francisco Diego; Counterterms in semiclassical Hořava-Lifshitz gravity; Springer; Journal of High Energy Physics; 2010; 9; 8-2010; 9-191126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09%282010%29009info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2010)009info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1006.2870info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:49Zoai:ri.conicet.gov.ar:11336/57247instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:49.758CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Counterterms in semiclassical Hořava-Lifshitz gravity
title Counterterms in semiclassical Hořava-Lifshitz gravity
spellingShingle Counterterms in semiclassical Hořava-Lifshitz gravity
Giribet, Gaston Enrique
Models of Quantum Gravity
Renormalization Regularization And Renormalons
title_short Counterterms in semiclassical Hořava-Lifshitz gravity
title_full Counterterms in semiclassical Hořava-Lifshitz gravity
title_fullStr Counterterms in semiclassical Hořava-Lifshitz gravity
title_full_unstemmed Counterterms in semiclassical Hořava-Lifshitz gravity
title_sort Counterterms in semiclassical Hořava-Lifshitz gravity
dc.creator.none.fl_str_mv Giribet, Gaston Enrique
Lopez Nacir, Diana Laura
Mazzitelli, Francisco Diego
author Giribet, Gaston Enrique
author_facet Giribet, Gaston Enrique
Lopez Nacir, Diana Laura
Mazzitelli, Francisco Diego
author_role author
author2 Lopez Nacir, Diana Laura
Mazzitelli, Francisco Diego
author2_role author
author
dc.subject.none.fl_str_mv Models of Quantum Gravity
Renormalization Regularization And Renormalons
topic Models of Quantum Gravity
Renormalization Regularization And Renormalons
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze the semiclassical Hořava-Lifshitz gravity for quantum scalar fields in 3 + 1 dimensions. The renormalizability of the theory requires that the action of the scalar field contains terms with six spatial derivatives of the field, i.e. in the UV, the classical action of the scalar field should preserve the anisotropic scaling symmetry (t → L 2zt, x→ → L 2x→, with z = 3) of the gravitational action. We discuss the renormalization procedure based on adiabatic subtraction and dimensional regularization in the weak field approximation. We verify that the divergent terms in the adiabatic expansion of the expectation value of the energy-momentum tensor of the scalar field contain up to six spatial derivatives, but do not contain more than two time derivatives. We compute explicitly the counterterms needed for the renormalization of the theory up to second adiabatic order and evaluate the associated β functions in the minimal subtraction scheme. © SISSA 2010.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lopez Nacir, Diana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We analyze the semiclassical Hořava-Lifshitz gravity for quantum scalar fields in 3 + 1 dimensions. The renormalizability of the theory requires that the action of the scalar field contains terms with six spatial derivatives of the field, i.e. in the UV, the classical action of the scalar field should preserve the anisotropic scaling symmetry (t → L 2zt, x→ → L 2x→, with z = 3) of the gravitational action. We discuss the renormalization procedure based on adiabatic subtraction and dimensional regularization in the weak field approximation. We verify that the divergent terms in the adiabatic expansion of the expectation value of the energy-momentum tensor of the scalar field contain up to six spatial derivatives, but do not contain more than two time derivatives. We compute explicitly the counterterms needed for the renormalization of the theory up to second adiabatic order and evaluate the associated β functions in the minimal subtraction scheme. © SISSA 2010.
publishDate 2010
dc.date.none.fl_str_mv 2010-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57247
Giribet, Gaston Enrique; Lopez Nacir, Diana Laura; Mazzitelli, Francisco Diego; Counterterms in semiclassical Hořava-Lifshitz gravity; Springer; Journal of High Energy Physics; 2010; 9; 8-2010; 9-19
1126-6708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57247
identifier_str_mv Giribet, Gaston Enrique; Lopez Nacir, Diana Laura; Mazzitelli, Francisco Diego; Counterterms in semiclassical Hořava-Lifshitz gravity; Springer; Journal of High Energy Physics; 2010; 9; 8-2010; 9-19
1126-6708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP09%282010%29009
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP09(2010)009
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1006.2870
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614474524262400
score 13.070432