3D characterization of magnetic phases through neutron polarization contrast tomography
- Autores
- Busi, Matteo; Polatidis, Efthymios; Samothrakitis, Stavros; Köhnen, Patrick; Malamud, Florencia; Haase, Christian; Strobl, Markus
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The advancement of laser-based metal additive manufacturing has enabled the production of near net shape complex geometries. Understanding the microstructural features of materials is crucial for accurate modeling of their mechanical behavior, particularly with regard to strain- or thermal-induced martensitic phase transformations in ferrous alloys and steels. For example, the formation of BCC α′-martensite can strengthen materials while preserving ductility of the dominating austenitic phase. However, in components where the shape memory effect is attributed to the reversible formation of ε-martensite, the accumulation of deformation-induced α′-martensite is an undesired, irreversible degradation mechanism. This study presents a novel tomographic approach utilizing polarization contrast neutron imaging for the 3D volumetric characterization of magnetic crystallographic phases, especially those present in low phase fractions that are typically undetectable with traditional techniques. The technique is applied to the study of strain-induced martensitic phase transformations in additively manufactured lattice structures made of high-Mn steels, which form small fractions of α′-martensite upon deformation. The results demonstrate the value of this technique for characterizing entire components and complex geometries found in numerous technological applications.
Fil: Busi, Matteo. Paul Scherrer Institute; Suiza
Fil: Polatidis, Efthymios. Paul Scherrer Institute; Suiza
Fil: Samothrakitis, Stavros. Paul Scherrer Institute; Suiza
Fil: Köhnen, Patrick. No especifíca;
Fil: Malamud, Florencia. Paul Scherrer Institute; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Haase, Christian. No especifíca;
Fil: Strobl, Markus. Paul Scherrer Institute; Suiza - Materia
-
Neutron imaging
Polarization contrast neutron imaging
Magnetic phases - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/240661
Ver los metadatos del registro completo
id |
CONICETDig_7ad04a86283d104bbb9973647f51649e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/240661 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
3D characterization of magnetic phases through neutron polarization contrast tomographyBusi, MatteoPolatidis, EfthymiosSamothrakitis, StavrosKöhnen, PatrickMalamud, FlorenciaHaase, ChristianStrobl, MarkusNeutron imagingPolarization contrast neutron imagingMagnetic phaseshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The advancement of laser-based metal additive manufacturing has enabled the production of near net shape complex geometries. Understanding the microstructural features of materials is crucial for accurate modeling of their mechanical behavior, particularly with regard to strain- or thermal-induced martensitic phase transformations in ferrous alloys and steels. For example, the formation of BCC α′-martensite can strengthen materials while preserving ductility of the dominating austenitic phase. However, in components where the shape memory effect is attributed to the reversible formation of ε-martensite, the accumulation of deformation-induced α′-martensite is an undesired, irreversible degradation mechanism. This study presents a novel tomographic approach utilizing polarization contrast neutron imaging for the 3D volumetric characterization of magnetic crystallographic phases, especially those present in low phase fractions that are typically undetectable with traditional techniques. The technique is applied to the study of strain-induced martensitic phase transformations in additively manufactured lattice structures made of high-Mn steels, which form small fractions of α′-martensite upon deformation. The results demonstrate the value of this technique for characterizing entire components and complex geometries found in numerous technological applications.Fil: Busi, Matteo. Paul Scherrer Institute; SuizaFil: Polatidis, Efthymios. Paul Scherrer Institute; SuizaFil: Samothrakitis, Stavros. Paul Scherrer Institute; SuizaFil: Köhnen, Patrick. No especifíca;Fil: Malamud, Florencia. Paul Scherrer Institute; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Haase, Christian. No especifíca;Fil: Strobl, Markus. Paul Scherrer Institute; SuizaElsevier2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240661Busi, Matteo; Polatidis, Efthymios; Samothrakitis, Stavros; Köhnen, Patrick; Malamud, Florencia; et al.; 3D characterization of magnetic phases through neutron polarization contrast tomography; Elsevier; Additive Manufacturing Letters; 6; 6-2023; 1-52772-3690CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.addlet.2023.100155info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:07Zoai:ri.conicet.gov.ar:11336/240661instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:07.75CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
3D characterization of magnetic phases through neutron polarization contrast tomography |
title |
3D characterization of magnetic phases through neutron polarization contrast tomography |
spellingShingle |
3D characterization of magnetic phases through neutron polarization contrast tomography Busi, Matteo Neutron imaging Polarization contrast neutron imaging Magnetic phases |
title_short |
3D characterization of magnetic phases through neutron polarization contrast tomography |
title_full |
3D characterization of magnetic phases through neutron polarization contrast tomography |
title_fullStr |
3D characterization of magnetic phases through neutron polarization contrast tomography |
title_full_unstemmed |
3D characterization of magnetic phases through neutron polarization contrast tomography |
title_sort |
3D characterization of magnetic phases through neutron polarization contrast tomography |
dc.creator.none.fl_str_mv |
Busi, Matteo Polatidis, Efthymios Samothrakitis, Stavros Köhnen, Patrick Malamud, Florencia Haase, Christian Strobl, Markus |
author |
Busi, Matteo |
author_facet |
Busi, Matteo Polatidis, Efthymios Samothrakitis, Stavros Köhnen, Patrick Malamud, Florencia Haase, Christian Strobl, Markus |
author_role |
author |
author2 |
Polatidis, Efthymios Samothrakitis, Stavros Köhnen, Patrick Malamud, Florencia Haase, Christian Strobl, Markus |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Neutron imaging Polarization contrast neutron imaging Magnetic phases |
topic |
Neutron imaging Polarization contrast neutron imaging Magnetic phases |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The advancement of laser-based metal additive manufacturing has enabled the production of near net shape complex geometries. Understanding the microstructural features of materials is crucial for accurate modeling of their mechanical behavior, particularly with regard to strain- or thermal-induced martensitic phase transformations in ferrous alloys and steels. For example, the formation of BCC α′-martensite can strengthen materials while preserving ductility of the dominating austenitic phase. However, in components where the shape memory effect is attributed to the reversible formation of ε-martensite, the accumulation of deformation-induced α′-martensite is an undesired, irreversible degradation mechanism. This study presents a novel tomographic approach utilizing polarization contrast neutron imaging for the 3D volumetric characterization of magnetic crystallographic phases, especially those present in low phase fractions that are typically undetectable with traditional techniques. The technique is applied to the study of strain-induced martensitic phase transformations in additively manufactured lattice structures made of high-Mn steels, which form small fractions of α′-martensite upon deformation. The results demonstrate the value of this technique for characterizing entire components and complex geometries found in numerous technological applications. Fil: Busi, Matteo. Paul Scherrer Institute; Suiza Fil: Polatidis, Efthymios. Paul Scherrer Institute; Suiza Fil: Samothrakitis, Stavros. Paul Scherrer Institute; Suiza Fil: Köhnen, Patrick. No especifíca; Fil: Malamud, Florencia. Paul Scherrer Institute; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Haase, Christian. No especifíca; Fil: Strobl, Markus. Paul Scherrer Institute; Suiza |
description |
The advancement of laser-based metal additive manufacturing has enabled the production of near net shape complex geometries. Understanding the microstructural features of materials is crucial for accurate modeling of their mechanical behavior, particularly with regard to strain- or thermal-induced martensitic phase transformations in ferrous alloys and steels. For example, the formation of BCC α′-martensite can strengthen materials while preserving ductility of the dominating austenitic phase. However, in components where the shape memory effect is attributed to the reversible formation of ε-martensite, the accumulation of deformation-induced α′-martensite is an undesired, irreversible degradation mechanism. This study presents a novel tomographic approach utilizing polarization contrast neutron imaging for the 3D volumetric characterization of magnetic crystallographic phases, especially those present in low phase fractions that are typically undetectable with traditional techniques. The technique is applied to the study of strain-induced martensitic phase transformations in additively manufactured lattice structures made of high-Mn steels, which form small fractions of α′-martensite upon deformation. The results demonstrate the value of this technique for characterizing entire components and complex geometries found in numerous technological applications. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/240661 Busi, Matteo; Polatidis, Efthymios; Samothrakitis, Stavros; Köhnen, Patrick; Malamud, Florencia; et al.; 3D characterization of magnetic phases through neutron polarization contrast tomography; Elsevier; Additive Manufacturing Letters; 6; 6-2023; 1-5 2772-3690 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/240661 |
identifier_str_mv |
Busi, Matteo; Polatidis, Efthymios; Samothrakitis, Stavros; Köhnen, Patrick; Malamud, Florencia; et al.; 3D characterization of magnetic phases through neutron polarization contrast tomography; Elsevier; Additive Manufacturing Letters; 6; 6-2023; 1-5 2772-3690 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.addlet.2023.100155 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613300382334976 |
score |
13.070432 |