Damage Accumulation in Silica Glass Nanofibers

Autores
Bonfanti, Silvia; Ferrero, Ezequiel E.; Sellerio, Alessandro; Guerra, Roberto; Zapperi, Stefano
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The origin of the brittle-to-ductile transition, experimentally observed in amorphous silica nanofibers as the sample size is reduced, is still debated. Here we investigate the issue by extensive molecular dynamics simulations at low and room temperatures for a broad range of sample sizes, with open and periodic boundary conditions. Our results show that small sample-size enhanced ductility is primarily due to diffuse damage accumulation, that for larger samples leads to brittle catastrophic failure. Surface effects such as boundary fluidization contribute to ductility at room temperature by promoting necking, but are not the main driver of the transition. Our results suggest that the experimentally observed size-induced ductility of silica nanofibers is a manifestation of finite-size criticality, as expected in general for quasi-brittle disordered networks.
Fil: Bonfanti, Silvia. Università degli Studi di Milano; Italia
Fil: Ferrero, Ezequiel E.. Università degli Studi di Milano; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Sellerio, Alessandro. Università degli Studi di Milano; Italia
Fil: Guerra, Roberto. Università degli Studi di Milano; Italia
Fil: Zapperi, Stefano. Università degli Studi di Milano; Italia. Consiglio Nazionale delle Ricerche; Italia
Materia
DUCTILITY
FRACTURE
NANOFIBERS
NANOWIRES
SILICA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97132

id CONICETDig_7ace2d70b002e618efffe25097dc3b15
oai_identifier_str oai:ri.conicet.gov.ar:11336/97132
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Damage Accumulation in Silica Glass NanofibersBonfanti, SilviaFerrero, Ezequiel E.Sellerio, AlessandroGuerra, RobertoZapperi, StefanoDUCTILITYFRACTURENANOFIBERSNANOWIRESSILICAhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The origin of the brittle-to-ductile transition, experimentally observed in amorphous silica nanofibers as the sample size is reduced, is still debated. Here we investigate the issue by extensive molecular dynamics simulations at low and room temperatures for a broad range of sample sizes, with open and periodic boundary conditions. Our results show that small sample-size enhanced ductility is primarily due to diffuse damage accumulation, that for larger samples leads to brittle catastrophic failure. Surface effects such as boundary fluidization contribute to ductility at room temperature by promoting necking, but are not the main driver of the transition. Our results suggest that the experimentally observed size-induced ductility of silica nanofibers is a manifestation of finite-size criticality, as expected in general for quasi-brittle disordered networks.Fil: Bonfanti, Silvia. Università degli Studi di Milano; ItaliaFil: Ferrero, Ezequiel E.. Università degli Studi di Milano; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Sellerio, Alessandro. Università degli Studi di Milano; ItaliaFil: Guerra, Roberto. Università degli Studi di Milano; ItaliaFil: Zapperi, Stefano. Università degli Studi di Milano; Italia. Consiglio Nazionale delle Ricerche; ItaliaAmerican Chemical Society2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97132Bonfanti, Silvia; Ferrero, Ezequiel E.; Sellerio, Alessandro; Guerra, Roberto; Zapperi, Stefano; Damage Accumulation in Silica Glass Nanofibers; American Chemical Society; Nano Letters; 18; 7; 7-2018; 4100-41061530-6984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.nanolett.8b00469info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.nanolett.8b00469info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:22Zoai:ri.conicet.gov.ar:11336/97132instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:23.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Damage Accumulation in Silica Glass Nanofibers
title Damage Accumulation in Silica Glass Nanofibers
spellingShingle Damage Accumulation in Silica Glass Nanofibers
Bonfanti, Silvia
DUCTILITY
FRACTURE
NANOFIBERS
NANOWIRES
SILICA
title_short Damage Accumulation in Silica Glass Nanofibers
title_full Damage Accumulation in Silica Glass Nanofibers
title_fullStr Damage Accumulation in Silica Glass Nanofibers
title_full_unstemmed Damage Accumulation in Silica Glass Nanofibers
title_sort Damage Accumulation in Silica Glass Nanofibers
dc.creator.none.fl_str_mv Bonfanti, Silvia
Ferrero, Ezequiel E.
Sellerio, Alessandro
Guerra, Roberto
Zapperi, Stefano
author Bonfanti, Silvia
author_facet Bonfanti, Silvia
Ferrero, Ezequiel E.
Sellerio, Alessandro
Guerra, Roberto
Zapperi, Stefano
author_role author
author2 Ferrero, Ezequiel E.
Sellerio, Alessandro
Guerra, Roberto
Zapperi, Stefano
author2_role author
author
author
author
dc.subject.none.fl_str_mv DUCTILITY
FRACTURE
NANOFIBERS
NANOWIRES
SILICA
topic DUCTILITY
FRACTURE
NANOFIBERS
NANOWIRES
SILICA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The origin of the brittle-to-ductile transition, experimentally observed in amorphous silica nanofibers as the sample size is reduced, is still debated. Here we investigate the issue by extensive molecular dynamics simulations at low and room temperatures for a broad range of sample sizes, with open and periodic boundary conditions. Our results show that small sample-size enhanced ductility is primarily due to diffuse damage accumulation, that for larger samples leads to brittle catastrophic failure. Surface effects such as boundary fluidization contribute to ductility at room temperature by promoting necking, but are not the main driver of the transition. Our results suggest that the experimentally observed size-induced ductility of silica nanofibers is a manifestation of finite-size criticality, as expected in general for quasi-brittle disordered networks.
Fil: Bonfanti, Silvia. Università degli Studi di Milano; Italia
Fil: Ferrero, Ezequiel E.. Università degli Studi di Milano; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Sellerio, Alessandro. Università degli Studi di Milano; Italia
Fil: Guerra, Roberto. Università degli Studi di Milano; Italia
Fil: Zapperi, Stefano. Università degli Studi di Milano; Italia. Consiglio Nazionale delle Ricerche; Italia
description The origin of the brittle-to-ductile transition, experimentally observed in amorphous silica nanofibers as the sample size is reduced, is still debated. Here we investigate the issue by extensive molecular dynamics simulations at low and room temperatures for a broad range of sample sizes, with open and periodic boundary conditions. Our results show that small sample-size enhanced ductility is primarily due to diffuse damage accumulation, that for larger samples leads to brittle catastrophic failure. Surface effects such as boundary fluidization contribute to ductility at room temperature by promoting necking, but are not the main driver of the transition. Our results suggest that the experimentally observed size-induced ductility of silica nanofibers is a manifestation of finite-size criticality, as expected in general for quasi-brittle disordered networks.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97132
Bonfanti, Silvia; Ferrero, Ezequiel E.; Sellerio, Alessandro; Guerra, Roberto; Zapperi, Stefano; Damage Accumulation in Silica Glass Nanofibers; American Chemical Society; Nano Letters; 18; 7; 7-2018; 4100-4106
1530-6984
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97132
identifier_str_mv Bonfanti, Silvia; Ferrero, Ezequiel E.; Sellerio, Alessandro; Guerra, Roberto; Zapperi, Stefano; Damage Accumulation in Silica Glass Nanofibers; American Chemical Society; Nano Letters; 18; 7; 7-2018; 4100-4106
1530-6984
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.nanolett.8b00469
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.nanolett.8b00469
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614183612579840
score 13.070432