A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model

Autores
Oran, R.; Landi, E.; Van Der Holst, B.; Lepri, S. T.; Vasquez, Alberto Marcos; Nuevo, Federico Alberto; Frazin, R.; Manchester, W.; Sokolov, I.; Gombosi, T. I.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The higher charge states found in slow (<400 km s−1) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops, and released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using AWSoM, a global magnetohydrodynamic model driven by Alfv{´e}n waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge states calculation covering all latitudes in a realistic magnetic field. The ratios $O^{+7}/O^{+6}$ and $C^{+6}/C^{+5}$ are compared to in-situ Ulysses observations, and are found to be higher in the slow wind, as observed; however, they are under-predicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to EIS observations above a coronal hole. The agreement is partial, and suggests that all ionization rates are under-predicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows it originates from coronal hole boundaries (CHB), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global, and observationally supported by EUV tomography.
Fil: Oran, R.. University Of Michigan; Estados Unidos
Fil: Landi, E.. University Of Michigan; Estados Unidos
Fil: Van Der Holst, B.. University Of Michigan; Estados Unidos
Fil: Lepri, S. T.. University Of Michigan; Estados Unidos
Fil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Nuevo, Federico Alberto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Frazin, R.. University Of Michigan; Estados Unidos
Fil: Manchester, W.. University Of Michigan; Estados Unidos
Fil: Sokolov, I.. University Of Michigan; Estados Unidos
Fil: Gombosi, T. I.. University Of Michigan; Estados Unidos
Materia
Sun: heliosphere
techniques: spectroscopic
turbulence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17853

id CONICETDig_7ab05734f11bd211e0971f78c35ce2ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/17853
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD ModelOran, R.Landi, E.Van Der Holst, B.Lepri, S. T.Vasquez, Alberto MarcosNuevo, Federico AlbertoFrazin, R.Manchester, W.Sokolov, I.Gombosi, T. I.Sun: heliospheretechniques: spectroscopicturbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The higher charge states found in slow (<400 km s−1) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops, and released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using AWSoM, a global magnetohydrodynamic model driven by Alfv{´e}n waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge states calculation covering all latitudes in a realistic magnetic field. The ratios $O^{+7}/O^{+6}$ and $C^{+6}/C^{+5}$ are compared to in-situ Ulysses observations, and are found to be higher in the slow wind, as observed; however, they are under-predicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to EIS observations above a coronal hole. The agreement is partial, and suggests that all ionization rates are under-predicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows it originates from coronal hole boundaries (CHB), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global, and observationally supported by EUV tomography.Fil: Oran, R.. University Of Michigan; Estados UnidosFil: Landi, E.. University Of Michigan; Estados UnidosFil: Van Der Holst, B.. University Of Michigan; Estados UnidosFil: Lepri, S. T.. University Of Michigan; Estados UnidosFil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Nuevo, Federico Alberto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Frazin, R.. University Of Michigan; Estados UnidosFil: Manchester, W.. University Of Michigan; Estados UnidosFil: Sokolov, I.. University Of Michigan; Estados UnidosFil: Gombosi, T. I.. University Of Michigan; Estados UnidosIop Publishing2015-06-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17853Oran, R.; Landi, E.; Van Der Holst, B.; Lepri, S. T.; Vasquez, Alberto Marcos; et al.; A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model; Iop Publishing; Astrophysical Journal; 806; 1; 10-6-2015; 1-250004-637Xenginfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1412.8288v1info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/806/1/55info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0004-637X/806/1/55/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:07Zoai:ri.conicet.gov.ar:11336/17853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:07.373CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model
title A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model
spellingShingle A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model
Oran, R.
Sun: heliosphere
techniques: spectroscopic
turbulence
title_short A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model
title_full A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model
title_fullStr A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model
title_full_unstemmed A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model
title_sort A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model
dc.creator.none.fl_str_mv Oran, R.
Landi, E.
Van Der Holst, B.
Lepri, S. T.
Vasquez, Alberto Marcos
Nuevo, Federico Alberto
Frazin, R.
Manchester, W.
Sokolov, I.
Gombosi, T. I.
author Oran, R.
author_facet Oran, R.
Landi, E.
Van Der Holst, B.
Lepri, S. T.
Vasquez, Alberto Marcos
Nuevo, Federico Alberto
Frazin, R.
Manchester, W.
Sokolov, I.
Gombosi, T. I.
author_role author
author2 Landi, E.
Van Der Holst, B.
Lepri, S. T.
Vasquez, Alberto Marcos
Nuevo, Federico Alberto
Frazin, R.
Manchester, W.
Sokolov, I.
Gombosi, T. I.
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Sun: heliosphere
techniques: spectroscopic
turbulence
topic Sun: heliosphere
techniques: spectroscopic
turbulence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The higher charge states found in slow (<400 km s−1) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops, and released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using AWSoM, a global magnetohydrodynamic model driven by Alfv{´e}n waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge states calculation covering all latitudes in a realistic magnetic field. The ratios $O^{+7}/O^{+6}$ and $C^{+6}/C^{+5}$ are compared to in-situ Ulysses observations, and are found to be higher in the slow wind, as observed; however, they are under-predicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to EIS observations above a coronal hole. The agreement is partial, and suggests that all ionization rates are under-predicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows it originates from coronal hole boundaries (CHB), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global, and observationally supported by EUV tomography.
Fil: Oran, R.. University Of Michigan; Estados Unidos
Fil: Landi, E.. University Of Michigan; Estados Unidos
Fil: Van Der Holst, B.. University Of Michigan; Estados Unidos
Fil: Lepri, S. T.. University Of Michigan; Estados Unidos
Fil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Nuevo, Federico Alberto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Frazin, R.. University Of Michigan; Estados Unidos
Fil: Manchester, W.. University Of Michigan; Estados Unidos
Fil: Sokolov, I.. University Of Michigan; Estados Unidos
Fil: Gombosi, T. I.. University Of Michigan; Estados Unidos
description The higher charge states found in slow (<400 km s−1) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops, and released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using AWSoM, a global magnetohydrodynamic model driven by Alfv{´e}n waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge states calculation covering all latitudes in a realistic magnetic field. The ratios $O^{+7}/O^{+6}$ and $C^{+6}/C^{+5}$ are compared to in-situ Ulysses observations, and are found to be higher in the slow wind, as observed; however, they are under-predicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to EIS observations above a coronal hole. The agreement is partial, and suggests that all ionization rates are under-predicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows it originates from coronal hole boundaries (CHB), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global, and observationally supported by EUV tomography.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17853
Oran, R.; Landi, E.; Van Der Holst, B.; Lepri, S. T.; Vasquez, Alberto Marcos; et al.; A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model; Iop Publishing; Astrophysical Journal; 806; 1; 10-6-2015; 1-25
0004-637X
url http://hdl.handle.net/11336/17853
identifier_str_mv Oran, R.; Landi, E.; Van Der Holst, B.; Lepri, S. T.; Vasquez, Alberto Marcos; et al.; A Steady-State Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-Driven MHD Model; Iop Publishing; Astrophysical Journal; 806; 1; 10-6-2015; 1-25
0004-637X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1412.8288v1
info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/806/1/55
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0004-637X/806/1/55/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613168213524480
score 13.070432